FirstRanker.com

www.FirstRanker.com

Enrolment.PirstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VII (NEW) EXAMINATION - WINTER 2018

Subject Code: 2173612

g

Date: 03/12/2018

Subject Name: Fundamentals of Reaction E	ngineering
Time: 10:30 AM TO 01:00 PM	

Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

MARKS

04

- Q.1 Differentiate elementary and non-elementary reactions. 03 (a) Write a short note on various reaction intermediates used to elucidate 04
 - **(b)** kinetics of non – elementary reactions.
 - Compare theories available for predicting the temperature dependency of 07 (c) reaction rate.
- Q.2 On doubling concentration of reactant rate of reaction triples. Find the 03 (a) order of reaction.
 - Derive integrated form of rate expression for nth order reaction **(b)**
 - An aqueous solution of ethyl acetate is to be saponifed with sodium 07 (c) hydroxide. The initial concentration of ethyl acetate is 5g/l and that of caustic is 0.1N. The values of second order reaction rate constant at 0 °C and 20 °C are k = 0.235 and 0.924 (l/mol min) respectively. The reaction is reversible. Calculate the time required to saponify 95% ester at 40 °C.

OR

- For the reaction $A \rightarrow R \rightarrow S$ estimate the maximum concentration of R 07 (c) and time at which maximum concentration of R occurs. Write on (i) Space time (ii) Space velocity (iii) Residence time 03 Q.3 (a)
 - For a gaseous feed of $C_{A0} = 100$ $C_{B0} = 200$ enters an isothermal flow **(b)** 04 reactor. For $X_A = 0.8$. Find C_A, C_B and X_B
 - Describe differential and integral method of analysis of rate data. (c) 07 OR
- (a) Explain correlation between fractional conversion and Damkohler 03 Q.3 number for a first order gas phase reaction of constant volume.
 - Write a short note on batch reactor systems used in process industries with **(b)** 04 advantages and disadvantages.
 - A parallel liquid phase reaction $A \rightarrow R(k_1)$; $A \rightarrow S(k_2)$ has rate constants (c) 07 $k_1 = 5$ hr⁻¹ and $k_2 = 0.8$ hr⁻¹. Find the moles of R produced in 15 min. Take $C_{A0} = 8.5 \text{ mol/l.} C_{R0} = C_{S0} = 0$
- Explain (i) standard heat of formation (ii) standard heat of combustion (iii) 03 **Q.4 (a)** standard heat of reaction
 - Establish concentration levels that needs to be maintained for a bi-molecular 04 **(b)** reaction inorder to maximize formation of desired product.
 - Prove that for reaction of first order occurring in a system of N CSTR's 07 (c) connected in series the behavior of overall system matches that of PFR.

OR

0.4 Differentiate overall fractional yield and selectivity. 03 (a) The standard heat of a gas phase reaction at 25 $^\circ\mathrm{C}$ 04 **(b)** $A + B \rightarrow 2R$ is $\Delta H_R^0 = \Delta H_{R (25^{\circ}C)} = -50000$ J indicating that reaction is

strongly exothermic. It is desired to run this reaction at 1000 °C. What is the nature and value of heat of reaction at that temperature?

Firstranker's choise The mean/average if stranker.com 25 °C and 100.Firstranker.com

 $\bar{C}_{pA} = 35 \text{ J/mol K}$ $\bar{C}_{pB} = 45 \text{ J/mol K}$ $\bar{C}_{pR} = 70 \text{ J/mol K}$

An aqueous reactant stream (4 mol A/l) passes through a mixed flow 07 **(c)** reactor followed by a plug flow reactor. Find the concentration at exit of plug flow reactor if in mixed flow rector the concentration is 1 mol/l. The reaction is second order with respect to A and volume of plug flow reactor is three times volume of mixed flow reactor.

Q.5	(a)	Write a short note on catalyst deactivation
	(b)	Discuss essential properties required for a catalyst.

04 (b) For decomposition of cumene to benzene synthesize a rate law 07 (c) considering surface reaction as rate determining step.

OR

Q.5	(a)	N ₂ O ₄ decomposes according to relation	03
		$N_2O_4 (g) \rightleftharpoons NO_2 (g)$	
		At 27 °C and 1 atm, 20% of N ₂ O ₄ is dissociated. Calculate equilibrium	
		constant K _P . (Take basis as 1 mol of N ₂ O ₄ gas)	
	(b)	Differentiate modifiers and inhibitors.	04
	(c)	Mention the seven steps governing the rate of conversion of reactant to	07

non the seven steps governing the rate of product in a catalytic reaction.

www.FirstRanker.com

03