GUJARAT TECHNOLOGICAL UNIVERSITY
 BE - SEMESTER-VII (OLD) EXAMINATION - WINTER 2018

Subject Code: 171003
Date: 26/11/2018
Subject Name: Digital Signal Processing
Time: 10:30 AM TO 01:00 PM
Total Marks: 70

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) A discrete-time signal $\mathrm{x}(\mathrm{n})$ is defined as

$$
x(n)=\left\{\begin{array}{cc}
1+\frac{n}{3} & -3 \leq n \leq 1 \\
1 & 0 \leq \mathrm{n} \leq 3 \\
0 & \text { elsewhere }
\end{array}\right.
$$

a) Determine its value and Sketch the signal.
b) Sketch the signal if
I. First fold $x(n)$ and then delay the resulting signal by four samples
II. First delay $x(n)$ by four samples and then fold the resulting signal
c) Compare above results. Is folding and Delay Operation is commutative operation?
d) Can you express the signal $x(n)$ in terms of $\delta(n)$ and $u(n)$?
(b) For each of following system determine whether system is stable, causal,

Linear, Time invariant or not.

1. $y(n)=\sum_{k=-\infty}^{n+1} x(k)$
2. $y(n)=x\left(n^{2}\right)$
3. $y(n)=\log x(n)$
Q. 2 (a) Prove that convergence of absolute sum of the impulse response is a sufficient
condition for BIBO (bounded input bounded output) stability of LTI system.
(b) Obtain a linear convolation of following two discrete-time signals:

$$
\begin{gathered}
x(n)=\sum_{k=0}^{2} \delta(n-k) \\
h(n)=2^{n}[u(n)-u(n-3)]
\end{gathered}
$$

OR
(b) Enlist Properties of linear convolution.

Obtain linear Convolution for $x(n)=\{1,1,0,1,1\}$ and $h(n)=\{1,-2,-3,4\}$
Q. 3 (a) What is ROC? Explain the properties of ROC in Z-Transform. 07
(b) Find magnitude Response and Phase Response of system described by differential equation

$$
\begin{gathered}
y(n)-\frac{1}{2} y(n-1)=x(n)-\frac{1}{4} x(n-1) \\
\text { OR }
\end{gathered}
$$

II realization of the following transfer function.

$$
H(z)=\frac{3+3.6 z^{-1}+0.6 z^{-2}}{1+0.1 z^{-1}-0.2 z^{-2}}
$$

(b) Prove differentiation property of Z-transform and obtain the Z-transform of nu(n) using the same.
Q. 4 (a) The system function of the analog filter is given as

$$
H_{a}=\frac{s+0.1}{(s+0.1)^{2}+9}
$$

Obtain the system function of the IIR digital filter by using impulse invariance method.
(b) State and Prove following Properties in terms of DFT.

1. Time Reversal
2. Periodicity

OR

Q. 4 (a) Compare FIR and IIR filters. 07
(b) Determine the response of FIR filter using DFT if

$$
x(n)=\{1,2\} \text { and } h(n)=\{2,2\}
$$

Q. 5 (a) Explain Decimation in Time FFT algorithm.
(b) Derive the DFT of the sample data sequence $x(n)=\{1,1,2,2,3,3\}$ determine the corresponding amplitude and phase spectrum.

OR
Q. 5 (a) Explain multiplier-Accumulator (MAC) hardware in DSP processors. 07
(b) Discuss the applications of digital signal processing with suitable examples.

