GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-III (OLD) EXAMINATION - WINTER 2018
Subject Code:130701Date:22/11/2018
Subject Name:Digital Logic Design Time:10:30 AM TO 01:00 PM Total Marks: 70
Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) With neat logical diagram \& truth table explain all the basic gates including ..... 07 NAND, NOR, EX-OR, EX-NOR gate.
(b) Convert (4BAC) $)_{16}=($ $\qquad$ $)_{8}=($ $\qquad$ $)_{4}=($ $\qquad$ $)_{2}=($ $\qquad$ $)_{10}$07
Q. 2 (a) State and prove Demorgan's theorem. ..... 07
(b) Simplify the following Boolean function using k-map ..... 07
(i) $\quad \mathrm{F}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma \mathrm{m}(0,1,2,4,5,6,8,9,12,13,14)$(ii) $\quad \mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma \mathrm{m}(0,1,3,4,5,7)$
OR
(b) Design a full adder circuit using two half adders \& gates. ..... 07
Q. 3 (a) Simplify following Boolean function by using the tabulation method ..... 07
$\mathrm{F}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma \mathrm{m}(0,1,2,8,10,11,14,15)$
(b) Using the law of Boolean algebra prove that07
(i) $\mathrm{AB}+\mathrm{BC}+\mathrm{A}^{\prime} \mathrm{C}=\mathrm{AB}+\mathrm{A}^{\prime} \mathrm{C}$ (ii) $\mathrm{A}\left[\mathrm{B}+\mathrm{C}(\mathrm{AB}+\mathrm{AC})^{\prime}\right]=\mathrm{AB}$.
OR
Q. 3 (a) Design and explain a logic diagram of 3 to 8 Decoder. ..... 07
(b) Design and explain $4 \times 1$ Multiplexer. ..... 07
Q. 4 (a) Draw \& explain T Flip Flop \& D Flip Flop. ..... 07
(b) Realize the expression $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})-\Sigma \mathrm{m}(4,6,7,8,9,12,14,15)$ using an ..... 07 8:1 MUX.
OR
Q. 4 (a) Write a note on Binary Ripple Counter. ..... 07
(b) Explain JK Flip Flop with its characteristic table. ..... 07
Q. 5 (a) Write a short on Hard - Wire Control. ..... 07
(b) Design a circuit for Binary to Gray code conversion. ..... 07
OR
Q. 5 (a) Explain Macro Operation v/s Micro Operation. ..... 07
(b) Implement Full Subtractor circuit with the help of Decoder \& logic gates. ..... 07
