FirstRanker.com

www.FirstRanker.com

CULARAT TECHNOLOCICAL UNIVERSITY

BE - SEMESTER-III (OLD) EXAMINATION – WINTER 2018			
Su	bject	Code:130701 Date:22/11/2018	
Su Tii Inst	bject me:10 tructio 1.	BE - SEMESTER-III (OLD) EXAMINATION – WINTER 2018Code:130701Date:22/11/2018Name:Digital Logic Design:30 AM TO 01:00 PMTotal Marks: 70ns:Attempt all questions.Make suitable assumptions wherever necessary.Figures to the right indicate full marks.With neat logical diagram & truth table explain all the basic gates including07NAND, NOR, EX-OR, EX-NOR gate.Convert (4BAC) ₁₆ = () ₈ = () ₄ = () ₂ = () ₁₀ 07	
	2. 3.	Figures to the right indicate full marks.	
Q.1	(a)	With neat logical diagram & truth table explain all the basic gates including NAND, NOR, EX-OR, EX-NOR gate.	07
Q.2	(b) (a) (b)	Convert $(4BAC)_{16} = (\underline{})_8 = (\underline{})_4 = (\underline{})_2 = (\underline{})_{10}$ State and prove Demorgan's theorem. Simplify the following Boolean function using k-map (i) F (w, x, y, z) = Σ m (0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14) (ii) F (x, y, z) = Σ m (0, 1, 3, 4, 5, 7)	07 07 07
	(b)	Design a full adder circuit using two half adders & gates.	07
Q.3	(a)	Simplify following Boolean function by using the tabulation method $F(w, x, y, z) = \Sigma m (0, 1, 2, 8, 10, 11, 14, 15)$	07
	(b)	Using the law of Boolean algebra prove that (i) $AB + BC + A'C = AB + A'C$ (ii) $A [B + C (AB + AC)'] = AB$. OR	07
Q.3	(a) (b)	Design and explain a logic diagram of 3 to 8 Decoder. Design and explain 4 x 1 Multiplexer.	07 07
Q.4	(a) (b)	Draw & explain T Flip Flop & D Flip Flop. Realize the expression F (A, B, C, D) = Σ m (4, 6, 7, 8, 9, 12, 14, 15) using an 8:1 MUX. OR	07 07
Q.4	(a) (b)	Write a note on Binary Ripple Counter. Explain JK Flip Flop with its characteristic table.	07 07
Q.5	(a) (b)	Write a short on Hard – Wire Control. Design a circuit for Binary to Gray code conversion.	07 07
Q.5	(a) (b)	Explain Macro Operation v/s Micro Operation. Implement Full Subtractor circuit with the help of Decoder & logic gates.	07 07

1