

GUJARAT TECHNOLOGICAL UNIVERSITY

Su	bject	BE - SEMESTER-III (OLD) EXAMINATION – WINTER 2018 Code:130901 Date:28/11/2018 Name:Circuits And Networks 0:30 AM TO 01:00 PM Total Marks: 70	
	tructio	ons: Attempt all questions. Make suitable assumptions wherever necessary.	
Q.1	(a) (b)	Define self and mutual inductance with dot convection method What is mesh? Determine i_1, i_2 , and i_3 using Mesh analysis in shown in Fig1.1	07 07
Q.2	(a) (b)	State, Prove and Summarize conditions for Maximum power transfer in DC circuit and different case in AC circuit. Compare Thevenin theorem and Norton theorem.	07 07
	(6)	OR	U1
	(b)	Classify DC responce of first order RL and RC circuits	07
Q.3	(a) (b)	Analyze time domain responce of source free second order linear networks In the network of figure 3.1, If t =0, switch 'k' is closed. Find the values of i, di/dt and d2 i/dt2 at t =0+ for element values as follows; V= 100V, R= 1000 and L= 1H.	07 07
Q.3	(a)	OR Analyze time domain responce of second order linear networks with constant	07
	(b)	inputs Consider the R-C circuit shown in fig 3.2, switch 'S' is closed at $t=0$ and assume that there is no initial charge in the capacitor. Find the initial conditions $i(0+)$ and $di(0+)/dt$. Discuss this for RLC series circuit.	07
Q.4	(a)	A function in Laplace domain is given by $F(S) = \frac{2(s+4)}{(s+3)(s+8)}$ Find the initial and final value by initial and final value theorem.	07
	(b)	A 10 volts step voltage is applied across a RC circuit at t=0. Find I(t) at t=0+ and obtain the value of di/dt _{t=0+} . Assume R=100 Ω , C=100 μ F	07
Q.4	(a)	The system responce of a function in frequency domain is describe by the following equation $S^2F(s)+sF(s)=\frac{2}{S^2}$	07
	(b)	Find f(t). A differential equation is represented by	07
		$\frac{d^2x}{dt^2} - x = e^{-t}$	
		Assuming zero initial condition, find $x(t)$ at $t>0$	
Q.5	(a) (b)	Derive the condition of reciprocity and symmetry in Z-parameter and	07 07

www.FirstRanker.com OR

www.FirstRanker.com

Q.5 (a) Derive equation of ABCD parameters in terms of h-parameter

07

(b) Describe Tie-set method

Fig 1.1

Fig 3.1

Fig 3.2
