Subject Code:130901
Subject Name:Circuits And Networks
Time:10:30 AM TO 01:00 PM
Date:28/11/2018

Total Marks: 70

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Define self and mutual inductance with dot convection method 07
(b) What is mesh? Determine i_{1}, i_{2}, and i_{3} using Mesh analysis in shown in Fig1.1 07
Q. 2 (a) State, Prove and Summarize conditions for Maximum power transfer in DC 07circuit and different case in AC circuit.
(b) Compare Thevenin theorem and Norton theorem. 07
OR
(b) Classify DC responce of first order RL and RC circuits 07
Q. 3 (a) Analyze time domain responce of source free second order linear networks 07
(b) In the network of figure 3.1, If $\mathrm{t}=0$, switch ' k ' is closed. Find the values of $\mathrm{i}, \mathrm{di} / \mathrm{dt}$ 07and $\mathrm{d} 2 \mathrm{i} / \mathrm{dt} 2$ at $\mathrm{t}=0+$ for element values as follows; $\mathrm{V}=100 \mathrm{~V}, \mathrm{R}=1000$ and $\mathrm{L}=$1 H .
OR
Q. 3 (a) Analyze time domain responce of second order linear networks with constant 07 inputs
(b) Consider the R-C circuit shown in fig 3.2, switch ' S ' is closed at $\mathrm{t}=0$ and assume 07 that there is no initial charge in the capacitor, Find the initial conditions $\mathrm{i}(0+$) and di(0+)/dt. Discuss this for RLC series circuit.
Q. 4 (a) A function in Laplace domain is given by 07

$$
\mathrm{F}(\mathrm{~S})=\frac{2(\mathrm{~s}+4)}{(\mathrm{s}+3)(\mathrm{s}+8)}
$$

Find the initial and final value by initial and final value theorem.
(b) A 10 volts step voltage is applied across a RC circuit at $t=0$. Find $I(t)$ at $t=0+\quad \mathbf{0 7}$ and obtain the value of $\mathrm{di} /\left.\mathrm{dt}\right|_{t=0+}$. Assume $\mathrm{R}=100 \Omega$, $\mathrm{C}=100 \mu \mathrm{~F}$

OR
Q. 4 (a) The system responce of a function in frequency domain is describe by the 07 following equation

$$
\mathrm{S}^{2} \mathrm{~F}(\mathrm{~s})+\mathrm{sF}(\mathrm{~s})=\frac{2}{\mathrm{~S}^{2}}
$$

Find $f(t)$.
(b) A differential equation is represented by

$$
\frac{\mathrm{d}^{2} \mathrm{x}}{\mathrm{dt}^{2}}-\mathrm{x}=\mathrm{e}^{-\mathrm{t}}
$$

Assuming zero initial condition, find $\mathrm{x}(\mathrm{t})$ at $\mathrm{t}>0$
Q. 5 (a) Derive the condition of reciprocity and symmetry in Z-parameter and 07
(b) Describe cut-set method
Q. 5 (a) Derive equation of ABCD parameters in terms of h-parameter

Fig 1.1

Fig 3.1

Fig 3.2

