GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III (OLD) EXAMINATION - WINTER 2018
Subject Code:131404
Date:05/12/2018
Subject Name:Food Engineering Thermodynamics
Time:10:30 AM TO 01:00 PM
Total Marks: 70 Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Standard Steam Tables and Psychrometric Chart can be used
Q. 1 (a) What are ideal gases? In what way real gases differ from ideal behaviour?

A container of $0.5 \mathrm{~m}^{3}$ contains nitrogen gas at 5 atmosphere pressure and $17^{\circ} \mathrm{C}$. Calculate the mass of gas in kg . Assume ideal gas behaviour.
[Take $\mathrm{R}=8.314 \mathrm{~J} / \mathrm{mol} \mathrm{K}$]
(b) State the law of corresponding states. Hundred kilogram of CO_{2} gas is stored in a 10 liter sealed container at $2{ }^{\circ} \mathrm{C}$. Calculate the pressure of the gas in kPa using compressibility factor of $\mathrm{z}=0.82$. [Take $\mathrm{M}=44$ and $\mathrm{R}=8.314 \mathrm{~J} / \mathrm{mole} \mathrm{K}$]
Q. 2 (a) State Zero ${ }^{\text {th }}$ law of thermodynamics. Convert $77^{\circ} \mathrm{F}$ in ${ }^{\circ} \mathrm{C}$ and Kelvin. Explain with a neat diagram the principle and working of any one thermometer.
(b) Explain Joule-Kelvin effect. Prove that for an ideal gas undergoing a throttling process, $\boldsymbol{\mu}_{\mathbf{j}, \mathbf{T}}=\mathbf{O}$

OR

(b) Define enthalpy. Prove that $\mathrm{C}_{\mathrm{p}}-\mathrm{C}_{\mathrm{v}}=\overline{\mathrm{R}}$ for ideal gases.

Five moles of SO_{2} gas at 300 K is heated reversibly at a constant pressure of 2 bar until its volume doubles. Calculate
(i) The work done.
(ii) Change in internal energy and enthalpy.
[Assume ideal behaviour $\mathrm{Cv}=32 \mathrm{~J} / \mathrm{mol} \mathrm{K}, \mathrm{R}=8.314 \mathrm{~J} / \mathrm{mol} \mathrm{k}$]
Q. 3 (a) Explain first law of thermodynamics for a closed system operating in a cycle. Prove that the work done by the system during an isentropic process is given by $\mathrm{W}=\frac{1}{\gamma-1}\left(P_{1} V_{1}-P_{2} V_{2}\right)$.
(b) What is SFEE? A steam turbine developing 600 kW receives a flow of 25 tonne/h of steam @ $110 \mathrm{~m} / \mathrm{s}$. The exit velocity of steam is $325 \mathrm{~m} / \mathrm{s}$. The inlet pipe is located 1.5 m above the outlet pipe. Using SFEE, calculate the change in enthalpy.

OR

Q. 3 (a) What is first law of thermodynamics? Prove that for a reversible adiabatic process $T V^{\gamma-1}=$ Constant.
(b) What is Gibb's phase rule? Explain different types of thermodynamic equilibrium.

Calculate the thermodynamic degrees of freedom of pure water at its critical point. schematic diagram.

Prove that $\int\left(\frac{d Q}{T}\right)<0$ for any irreversible cyclic process.
(b) Explain Carnot theorems. A Carnot heat engine operates between a source temperature of $620^{\circ} \mathrm{C}$ and a sink temperature of $37^{\circ} \mathrm{C}$. The work output is 20 kW . Calculate the amount of heat rejected to sink.

OR

Q. 4 (a) Explain the operation of a heat pump with help of a schematic diagram. A heat pump is operating between $5^{\circ} \mathrm{C}$ and $30^{\circ} \mathrm{C}$ at a COP of 50% of the maximum possible COP. If the net heating effect generated is 5 kW , calculate the power requirement.
(b) Explain Kelvin-Plank statement of second law of thermodynamics with the help of a neat schematic diagram. Show that for any reversible thermodynamic process:
$\left(\frac{\partial T}{\partial P}\right)_{S}=\left(\frac{\partial V}{\partial S}\right)_{P}$
Q. 5 (a) Draw a neat labeled P-v diagram of a pure substance (water) showing its various
states. Show that the specific volume of wet steam is given by,
$v=v_{\mathrm{g}}+(1-\mathrm{x}) v_{\mathrm{fg}}$.
Determine the following using steam tables for saturated steam at 5 bar pressure:
(i) Saturation temperature in ${ }^{\circ} \mathrm{C}$
(ii) Entropy in $\mathrm{kJ} / \mathrm{kg} \mathrm{K}$
(iii) Latent heat of vaporization in $\mathrm{kJ} / \mathrm{kg}$
(iv) Specific volume in $\mathrm{m}^{3} / \mathrm{kg}$
(b) Explain the following processes on a Psychrometric Chart:
(i) Sensible heating
(ii) Cooling and Dehumidification.

The following data are available for the atmospheric air:
Temperature $=40^{\circ} \mathrm{C}$, Atmospheric Pressure $=760 \mathrm{~mm} \mathrm{Hg}$ and RH $=80 \%$. Using Psychrometric Chart determine the following:
(i) Mass of air in kg .
(ii) DPT in ${ }^{\circ} \mathrm{C}$
(iii) WBT in ${ }^{\circ} \mathrm{C}$
(iv) Enthalpy
(v) Specific volume

OR

Q. 5 (a) Explain phase diagram of a pure substance (Water) on a T-s diagram.

Using Steam Tables determine the following for saturated steam at $150^{\circ} \mathrm{C}$:
(i) Specific enthalpy
(ii) Latent heat of vaporization $\left(\mathrm{h}_{\mathrm{fg}}\right)$
(iii) Density
(iv) Specific entropy

Firstrant kerefine fic following inwrutipirstranikerircom
i. Dry bulb temperature
ii. Wet bulb and temperature
iii. Adiabatic saturation temperature

Air at a certain location having a barometric pressure of 760 mm Hg , air is at DBT and WBT of $35{ }^{\circ} \mathrm{C}$ and $26^{\circ} \mathrm{C}$ respectively. Determine the following using Psychrometric Chart:
(i) Absolute humidity
(ii) Relative humidity
(iii) Relative humidity
(iv) Dew point temperature

