GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-IV (NEW) EXAMINATION - WINTER 2018

Subject Code:2140001
Date:22/11/2018
Subject Name:Mathematics-4
Time: 02:30 PM TO 05:30 PM
Total Marks: 70

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Find the complex conjugate of $\frac{5+2 i}{1-i}$
(b) Find the locus of z given by $\left|\frac{z-1}{z+1}\right|=1$.
(c) Show that $u=y^{3}-3 x^{2} y$ is a harmonic function. Also find its harmonic coniugate.
Q. 2 (a) Determine the region in the z-plane represented by $1<|z-2|<3$. 03
(b) Show that $\frac{1+2 z}{z^{2}+z^{3}}=\frac{1}{z^{2}}+\frac{1}{z}-1+z-z^{2}+\cdots$ in $0<|z|<1$.
(c) Find the roots common to the equation $z^{4}+1=0$ and $z^{6}-i=0$.

OR

(c) Evaluate $\int_{C} \bar{z} d z$ along the straight line joining $z=1-i$ to $z=3+2 i$.
Q. 3 (a) Expand $f(z)=\frac{1}{z}$ as a Taylor's series about the point $z_{0}=1$. Also determine 03 the region of convergence and radius of convergence.
(b) Find the bilinear transformation which maps the points $z=1, i,-1$ into the points $w=i, 0,-i$.
(c) Evaluate $\int_{0}^{2 \pi} \frac{\cos 2 \theta}{5+4 \cos \theta} d \dot{\theta}$

OR

Q. 3 (a) Determine and sketch the image of $|z|=1$ under the transformation $w=z+03$ i.
(b) Determine the poles of the equation $f(z)=\frac{z^{2}}{(z-1)^{2}(z+2)}$ and residue at each pole.
(c) Evaluate $\int_{C} \operatorname{Re}\left(z^{2}\right) d z$, where C is the boundary of the square with vertices $0, i, 1+i, 1$ in the clockwise direction.

x	1	1.3	1.6	1.9	2.2	2.5
$\mathrm{~F}(\mathrm{x})$	1	1.69	2.56	3.61	4.84	6.25

(b) Solve the following system of equation using Gauss Elimination method with partial pivoting

$$
\begin{gathered}
x+y+z=7 \\
3 x+3 y+4 z=24 \\
2 x+y+3 z=16
\end{gathered}
$$

(c) Find the values of y for $x=21$ and $x=28$ from the following data.

x	20	23	26	29
y	0.3420	0.3907	0.4384	0.4848

OR

Q. 4 (a) Find the largest eigenvalue and corresponding eigen vector for $A=\left[\begin{array}{ll}5 & 2 \\ 2 & 1\end{array}\right]$
(b) Find the positive root of $x=\cos x$ correct upto 3 decimal places, using N-R method.
(c) Solve the following system by Gauss-Jacobi method.

$$
\begin{gathered}
27 x+6 y-z=85 \\
6 x+15 y+2 z=72 \\
x+y+54 z=110
\end{gathered}
$$

Q. 5 (a) Evaluate $\Delta^{2} \cos 2 x$
(b) Express the function $\frac{3 x^{2}-12 x+1 I}{(x-1)(x-2)(x-3)}$ as a sum of partial fraction, using Largrange's formula.
(c) Find the value of y for $\frac{d y}{d x}=x+y ; y(0)=1$, when $x=0.1,0.2$ with step size $\mathrm{h}=0.05$. Also compare with analytic solution.

OR

Q. 5 (a) Find a root of the equation $x^{3}-x-11=0$, using the bisection method up to fourth approximation.
(b) From the following table, find $f(x)$ using Newton's divided difference formula

x	1	2	7	8
$f(x)$	1	5	5	4

