GUJARAT TECHNOLOGICAL UNIVERSITY
 BE - SEMESTER-IV (NEW) EXAMINATION - WINTER 2018

Subject Code:2140105
Date:22/11/2018
Subject Name:Numerical Methods
Time: 02:30 PM TO 05:00 PM
Total Marks: 70

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Name five iterative methods which evaluate the root of equations.
(b) Perform five iterations of Bisection method to obtain real root
of $x^{3}-x-1=0$.
(c) By the method of least squares, find the straight line $y=a x+b$ that best fits the following data:

x	0	5	10	15	20	25
y	12	15	17	22	24	30

Q. 2 (a) Mention atleast two difference between Newton's forward

Interpolation and Newton's divided difference interpolation.
(b) Find second degree polynomial passing through the points
$(-1,8),(0,3),(2,1)$ and $(3,12)$ using Lagrange interpolation.
(c) Obtain cubic splines for every subintervals from the following data:

x	0	1	2	3
y	1	2	$\sqrt{43}$	244
OR				

(c) Using Newton's Divided Difference Interpolation find f(x) from the following table:

x	1	2	7	8	
y	1	5		5	4

Q. 3 (a) Use Gauss Elimination to solve:
$x+3 y+2 z=5$
$2 x+4 y-6 z=-4$
$x+5 y+3 z=10$
(b) Consider following tabular values:

x	25	25.1	25.2	25.3	25.4	25.5	25.6
$\mathrm{~F}(\mathrm{x})$	3.205	3.217	3.232	3.245	3.256	3.268	3.280

Determine the area bounded by given curve and x -axis between $x=25$ to $x=25.6$ by the Trapezoidal rule.
(c) Describe Newton-Raphson method and find root of equation $x \sin x+\cos x=0$ which is near π correct upto 5 decimal places.

OR

Q. 3 (a) Find approximate root of $x^{3}-2 x-1=0$ starting from $\mathrm{x}_{0}=1.5$ to $\mathrm{x}_{1}=2$ by Secant method correct upto 3 decimal places.
(b) Evaluate by Simpson's $\frac{1}{3}$ Rule, $\int_{0}^{5} \frac{1}{5+4 x} d x$ taking 10 equal parts, hence obtain approximate value of $\log _{e} 5$.
 Siedel method:
$5 \mathrm{x}+\mathrm{y}-\mathrm{z}=10$
$2 x+4 y+z=14$
$x+y+8 z=20$
Q. 4 (a) State finite difference quotients for first and second order derivatives.
(b) Solve heat equation $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$ with $\mathrm{u}(\mathrm{x}, 0)=0, \mathrm{u}(0, \mathrm{t})=0$ and $\mathrm{u}(1, \mathrm{t})=\mathrm{t}$ with $\mathrm{k}=\frac{1}{8}, \mathrm{~h}=\frac{1}{4}$.
(c) Solve by Runge-Kutta fourth order $\frac{d y}{d x}=2 x+y, \mathrm{y}(0)=1$, $h=0.1$ find $y(0.1)$ and $y(0.2)$.

OR
Q. 4 (a) State Gauss-Seidel method for Laplace equation. 03
(b) Discuss shooting approach for Boundary Value Problem in 04 brief.
Write two differences between finite difference method and07
(c) finite element method.
Q. 5 (a) Evaluate (1) $(1+\Delta)(1-\nabla)=1$
(2) $\Delta=E \nabla \quad 03$
(b) Solve by Runge-Kutta second order $\frac{d y}{d x}=3 x+y, \mathrm{y}(1)=1.3$, $\mathrm{h}=0.1$ find $\mathrm{y}(1.2)$.
(c) Evaluate IVP $\frac{d y}{d x}=x \sqrt{y}, \mathrm{y}(1)=1$ and hence find $\mathrm{y}(1.5)$ taking $\mathrm{h}=0.1$ by Euler's method.

OR

Q. 5 (a) Describe Galerkin approach in brief.
(b) Solve y " $=x+y$ with boundary conditions $\mathrm{y}(0)=\mathrm{y}(1)=0$ by
finite difference method
(c) Describe Rayleigh Ritz method in brief. 07

