

www.FirstRanker.com

Enrolment FirstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-IV EXAMINATION – WINTER 2017

Subject Code:140502 Date:21/11		2017	
Su Tii Inst	bject ne: () ructio 1. 2. 3.	 Name: Chemical Engineering Thermodynamics-I 2.30 PM TO 05.00 PM To 05.00 PM To all Marks: Ons: Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. 	70
Q.1	(a) (b)	Explain PVT Behavior of pure Substance with the help of PV and PT diagram? Differentiate between (1) Intensive Vs. Extensive property (2) State Vs. Path Function?	07 07
Q.2	(a) (b)	State the mathematical statement of second law of thermodynamics. A steel casting $[Cp = 0.5 \text{ kJ kg}^{-1} \text{ K}^{-1}]$ weighing 40 kg and at a temperature of 450°C is quenched in 150 kg of oil $[Cp = 2.5 \text{ kJ kg}^{-1} \text{ K}^{-1}]$ at 25°C. If there are no heat losses, what is the change entropy of (i) the casting (ii) the oil and (iii) both considered together?	07 07
	(b)	Discuss thermodynamic diagrams.	07
Q.3	(a) (b)	 Write in Brief about Maxwell relation. State the importance of it? An ideal gas with C_v = 1.5R undergoes the following mechanically reversible changes in a series of non-flow processes as given below: a) From an initial state of 70 °C and 1 bar, it is compressed adiabatically to 150 °C. b) It is then cooled from 150 °C to 70 °C at a constant pressure. c) Finally the gas is expanded isothermally to its original state. Calculate Q,W, U and H for each of the three processes and for the cycle. 	07 07
Q.3	(a) (b)	Explain concept of Entropy in brief. Discuss important properties of a refrigerant.	07 07
Q.4	(a) (b)	Explain Liquefaction of gas with T-S diagram? A refrigeration machine operating at a condenser temperature at 290 K needs 1kW of power per ton of refrigeration. Determine (1) COP (2) heat rejected to the condenser (3) the lowest temperature that can be maintained. Given that :1 Ton of refrigeration =12660 kJ/h=3516.67 W OR	07 07
Q.4	(a) (b)	Explain the importance of departure function in thermodynamic study? Explain Cascade Refrigeration with suitable diagram?	07 07
Q.5	(a)	What is mach number? Show that the maximum fluid velocity attainable for flow	07
	(b)	through a pipe of a uniform cross-section is equal to the sonic velocity. Explain working principle of a heat pump. OR	07
Q.5	(a)	Derive the expression for Pc,Vc, Tc, and constant a and b for redlich Kwong	10
	(b)	equation of state? Define (1) Heat of reaction (3)Hess's law of constant heat summation.	04
