

Subject Code: 160105

Date: 08-11-2017

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VI (OLD) • EXAMINATION - WINTER 2017

Subject Name: Computational Fluid Dynamics-II Time: 02:30 pm to 05:00 pm Instructions: 1. Attempt all questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks.			70
Q.1	(a) (b)	What is CFD? State its application in various fields. State the disadvantage of Central difference scheme and explain 1st order upwind scheme.	07 07
Q.2	(a) (b)	What is Grid transformation? Explain with an example of airfoil. Write a note on Multidimensional Problem. OR	07 07
	(b)	What is the need of Linearization? Explain the Beam and Warming Method.	07
Q.3	(a)	Derive the flux terms of governing equations for Numerical Solution of Prandtl-Mayer expansion flow field.	07
	(b)	Discuss the calculation of step size in space and time for flow over flat plate. OR	07
Q.3	(a)	Explain purely subsonic flow through the CD nozzle. Also explain the boundary conditions for the same.	07
	(b)	Explain TVD and flux limiters in brief	07
Q.4	(a) (b)	Explain the MacCormack subroutine for a flat plate Write a short note on High Resolution Schemes. OR	07 07
Q.4	(a) (b)	Write a note on Shock tube problem. Write a short note on Stretched Grids with example.	07 07
Q.5	(a) (b)	Write a short note on Boundary Fitted Coordinate systems with example. Transform the governing equations of Prandtl-Mayer expansion flow field from (x,y) coordinate system to (ξ,η) coordinate system OR	07 07
Q.5	(a)	Discuss the initial and boundary conditions for two dimensional unsteady, supersonic, viscous flow over the flat plate.	07
	(b)	Write a short note on The Godunov Approach with the help of the shock tube problem.	07
