GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-VII (NEW) EXAMINATION - WINTER 2017

Subject Code: 2170914
Date:02/11/2017
Subject Name: Digital Signal Processing(Departmental Elective - II)
Time: 10:30 AM TO 01:00 PM
Total Marks: 70
Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
MARKS
Q. 1 (a) Differentiate: Analog and digital signal processing. 03
(b) Define 1) Signal 2) System 3) Sampling (4) Quantization 04 Give example of each.
(c) What is pipelining? Explain with reference to DSP. What is 07 interlocking? State need of interlocking in brief.
Q. 2 (a) What is ROC in z transform? What is its importance? 03
(b) Discuss interconnection of LTI systems. 04
(c) State and prove the relationship between z-transform and discrete 07 time Fourier transform.
OR
(c) State and prove properties of Fourier transform. 07
Q. 3 (a) Explain the following terms with respect to Digital Signal Processor: 03
1) MAC
(b) Explain DIT algorithm. 04
(c) State and prove Parseval's relation for DTFT. 07
OR
Q. 3 (a) Draw the block diagram of basic generic harward architecture for a 03Signal processor.
(b) Define the following terms: 04
2) Impulse Response 2) Convolution 3) Correlation 4) Aliasing
(c) State basic structures of IIR systems. Also explain realization of 07 direct form I structure.
Q. 4 (a) Determine which of following signal is periodic. 03
(1) $x 1(t)=\sin 10 \pi t(2) x 2(t)=\sin 3 \pi t$
(b) Explain General Application of DSP. 04
(c) Define cross correlation and auto correlation. Find out correlation of 07sequences.
$X(\mathrm{n})=\{2,1,3,7, \underset{\widehat{\imath}}{1,2,-3\}}, \mathrm{y}(\mathrm{n})=\{1,-1,2,-2,4,1,-2,5\}$
Q. 4 (a) (1) Determine the z-transform of the signal 03
$\mathrm{x}(\mathrm{n})=\delta(\mathrm{n}+1)+6 \delta(\mathrm{n})+12 \delta(\mathrm{n}-3))-\delta(\mathrm{n}-4)$
(b) Find the convolution of $\mathrm{x}(\mathrm{n})=(\mathrm{e})^{\wedge}(-\mathrm{n} 2)$ and $\mathrm{h}(\mathrm{n})=3 \mathrm{n} 2$ for all n 04
(c) Write short note on: Hilbert Transform. 07
Q. 5 (a) State Properties of DFT 03
(b) State and prove Final Value theorem for Z-transform 04

Q. 5 (a) For the system described by $\mathrm{y}(\mathrm{t})=\mathrm{x}(2 \mathrm{t})$, determine whether the $\mathbf{0 3}$ system is
(i) Stable (ii) causal
(b) Find the Z-transform and ROC of $x(n)=(a)^{\wedge_{n}} u(n)$.
04
(c) Discuss the concept of zero input limit cycle oscillation. How this 07 can be eliminated?
