

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VII (NEW) EXAMINATION - WINTER 2017

Subject Code: 2171916 Date:02/11/2017

Subject Name: Applied Mechanics of Solid(Department Elective - I)

Time: 10:30 AM TO 01:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

			MARKS
Q.1	(a)	Enlist theory of failures and explain any one.	03
	(b)	Define: 1) Body forces, 2) Surface forces	04
	(c)	Explain Mohr's circle diagram for principal stresses.	07
Q.2	(a)	Explain Boundary conditions.	03
	(b)		04
	(c)	Derive equation of Principal stresses in 2D.	07
		OR	
	(c)	The state of stress at a point is such that	07
		$\sigma_{\mathrm{x}} = \sigma_{\mathrm{y}} = \sigma_{\mathrm{z}} = \tau_{\mathrm{xy}} = \tau_{\mathrm{yz}} = \tau_{\mathrm{zx}} = \rho$	
		Determine the principal stresses and their directions.	
Q.3	(a)	Elaborate Octahedral Shearing stress theory in theory of	03
		failures.	
	(b)	State basic assumptions for the theory of incremental	04
	()	constitutive relation for elastic – plastic material.	0=
	(c)	With the help of neat sketch, discuss behavior of Prandit-	07
		Reuss under plane stress $\sigma_{ij} = [\sigma_1, 0, \sigma_3]$.	
0.0	()	OR	0.2
Q.3	(a)	What is Circular Polariscope?	03
	(b)	Define: Plane stress and plane strain.	04
	(c)	Derive stress distribution using Airy's stress function in a	07
Q.4	(a)	simply supported beam subjected to pure bending. State compatibility equations if body forces are constant.	03
Ų.4	(a) (b)	Difference between linear and non-linear elastic isotropic	03
	(0)	stress strain relation.	04
	(c)	Explain Normality, Convexity and Uniqueness for an	07
	(0)	elastic solids.	0,
OR			
Q.4	(a)	Explain Hooke's law for elastic material.	03
	(b)	Derive the equation of stress of thick pressure vessels	04
		only subjected to internal pressure.	
	(c)	Explain the Principle of virtual work and prove the	07
		relation for elastic solids.	
Q.5	(a)	State term associated flow rule benefits compared to non-	03
	(T.)	associated flow rules.	
	(b)	State the term Bouschinger Effect for an elasto-plastic	04
	(.)	material	05
	(c)	Discuss flow rules associated with von Mises yield	07
		function for perfectly plastic material.	

Firstranker.com

Firstranker's (a) o Explain stress www.trirstreativer.com work hardeningstreativer.com

- (b) State the term Kinematic Hardening for an elasto-plastic **04** material.
- Write a note on Druker's stability postulate for stability **07** (c) of work-hardening materials.

www.FirstPanker.com