MADIZE

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VII (NEW) EXAMINATION - WINTER 2017

Subject Code: 2171916	Date: 02/11/2017
-----------------------	------------------

Subject Name: Applied Mechanics of Solid(Department Elective - I)

Time: 10:30 AM TO 01:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

			MARKS	
Q.1	(a)	Enlist theory of failures and explain any one.	03	
2	(b)	Define: 1) Body forces, 2) Surface forces	04	
	(c)	Explain Mohr's circle diagram for principal stresses.	07	
	(0)	Explain from 5 circle diagram for principal stresses.		
Q.2	(a)	Explain Boundary conditions.	03	
	(b)	What is Recapitulation? Explain in brief.	04	
	(c)	Derive equation of Principal stresses in 2D.	07	
	(-)	OR		
	(c)	The state of stress at a point is such that	07	
	. ,	$\sigma_x = \sigma_y = \sigma_z = \tau_{xy} = \tau_{yz} = \tau_{zx} = \rho$		
		Determine the principal stresses and their directions.		
Q.3	(a)	Elaborate Octahedral Shearing stress theory in theory of	03	
Q.S	(a)	failures.	03	
	(b)	State basic assumptions for the theory of incremental	04	
	(~)	constitutive relation for elastic - plastic material.		
	(c)	With the help of neat sketch, discuss behavior of Prandit-	07	
	(-)	Reuss under plane stress $\sigma_{ij} = [\sigma_1, 0, \sigma_3]$.		
		OR		
Q.3	(a)	What is Circular Polariscope?	03	
2.0	(b)		04	
	(c)	Derive stress distribution using Airy's stress function in a	07	
	.,	simply supported beam subjected to pure bending.		
Q.4	(a)	State compatibility equations if body forces are constant.	03	
-	(b)	Difference between linear and non-linear elastic isotropic	04	
	, ,	stress strain relation.		
	(c)	Explain Normality, Convexity and Uniqueness for an	07	
		elastic solids.		
OR				
Q.4	(a)	Explain Hooke's law for elastic material.	03	
	(b)	Derive the equation of stress of thick pressure vessels	04	
		only subjected to internal pressure.		
	(c)	Explain the Principle of virtual work and prove the	07	
		relation for elastic solids.		
Q.5	(a)	State term associated flow rule benefits compared to non-	03	
		associated flow rules.		
	(b)		04	
		material		
	(c)	Discuss flow rules associated with von Mises yield	07	
		function for perfectly plastic material.		
		OR		

Firstranker.com

Firstranker's (Shoiseplain strewwwi.FirstRanker.com work hawwi.FirstRanker.com

- (b) State the term Kinematic Hardening for an elasto-plastic 04
- (c) Write a note on Druker's stability postulate for stability 07 of work-hardening materials.
