

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VII (NEW) EXAMINATION - WINTER 2017

Subject Code: 2173509/2173514 Date: 10/11/2017

Subject Name: Environmental Reaction Engineering

Time: 10:30 AM TO 01:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

MARKS 03

07

07

04

03

04

- **Q.1** (a) Make a mole balance on a batch reactor conducting a liquid phase bimolecular reaction with a reaction rate constant k₂ in units of liter, mol, and min to estimate time required for certain conversion of a reactant of the reaction.
 - (b) An aqueous feed of A and B (400 liter/min, 100 mmol A/liter, 200 mmol B/liter) is to be converted to product in a plug flow reactor. The kinetics of the reaction is represented by A + B → R,
 -r_A = 200 C_AC_B mol/(liter)(min). Find the volume of reactor needed for 99.9% conversion of A to product. Draw a schematic diagram.
 - (c) We plan to replace our present mixed flow reactor with one having double the volume. For the same aqueous feed (10 mol A/liter) and the same feed rate find the new conversion. The reaction kinetics are represented by $A \rightarrow R$, $-r_A = k C_A^{1.5}$, and present conversion is 70%. Draw a schematic diagram.
- Q.2 (a) Given the elementary reaction taking place in a batch reactor k_1

$$A \xrightarrow{k_1} R \xrightarrow{k_2} S$$

and $k_1 > k_2$, derive for C_A and C_R as functions of time, and sketch the concentration-time profiles of A, R, and S.

(b) Given the elementary reaction

$$A \xrightarrow{k_1} R \xrightarrow{k_2} S$$

taking place in a CSTR, show that

$$au_{m, ext{opt}} = rac{1}{\sqrt{k_1 k_2}}$$

OR

(b) Given the elementary reaction

$$A \xrightarrow{k_1} R \xrightarrow{k_2} S$$

taking place in a PFR, show that $\tau_{p,opt} = 1/k_{log mean}$

- Q.3 (a) Give names of two industrial products produced by catalytic reactions and the catalysts used therein.
 - **(b)** Give two chemical equations of catalytic reactions and the catalysts used therein.
 - (c) List out sequentially the steps involved in gas-solid catalytic reactions by Langmuir-Hinshelwood approach.

OR

- Q.3 (a) What is catalyst deactivation?
 - **(b)** Explain adsorption and desorption in gas-solid catalytic reactions.

1

irstranker's Describe with neat sketchen fired and fluidized bed catalytic rastranker. Com

- (a) Mention at least two series-parallel reactions of industrial importance.
 Define selectivity and overall and instantaneous fractional yields.
 (b) Describe with appropriate graphical representation the Jones
 07
 - (b) Describe with appropriate graphical representation the Jones graphical method to determine concentration in each MFR connected in a series of unequal sized MFRs.

OR

- Q.4 (a) Describe the graphical method to determine the best arrangement for given conversion of unequal sized MFRs connected in a series.
 - **(b)** Differentiate between physical and chemical adsorption.
- Q.5 (a) Evaluate the variance for the following distribution.

Time t, min	Tracer Output Concentration, C _{pulse} gm/liter fluid
0	0
5	3
10	5
15	5
20	4
25	2
30	1
35	0

(b) Write the sequence of steps according to shrinking core model for gas-solid non-catalytic reactions. Draw a schematic figure to show these steps when reaction A (g) + bB (s) → products takes place on a solid spherical particle of unchanging size.

OR

Q.5 (a) Plot the exit age distribution E using the following data.

Tracer Output Concentration, C gm/liter fluid Time t, min 0 5 3 5 10 15 20 25 2 30 1 35 0

- (b) Explain with the help of graphs or sketches the following with 3+2+2= reference to RTD.
 - i. F curve
 - ii. Impulse function
 - iii. Mean residence time

07

07

07