FACULTY OF ENGINEERING AND INFORMATICS

B.E. I Year (Main) Examination, May / June 2016
 Subject : Mathematics - I

Time : 3 hours
Max. Marks: 75

Note: Answer all questions from Part-A. Answer any FIVE questions from Part-B.

PART - A (25 Marks)
I Let $\boldsymbol{f}={ }_{3-x^{2}}^{1}$ and $f(0){ }^{w}$ I. Find an interval in which $f(1)$ lies.
2 Find the equation of the envelope of the family of straight linOs $y=c x+c^{2}$ where c is a parameter.
3 Prove that $f(x, y) \left\lvert\, \begin{array}{rr}\frac{x^{2} \quad x y+x+y}{x+y} ;(x, y) \#(2,2) \\ 4 \quad ;(x, y)=(2,2)\end{array}\right.$ is discontinuous at the point $(2,2)$.

4 If $f(x, y)=\tan (x y)$, find an approxima pvaluef $f(I .1,0.8)$ using the Taylor series linear approximation.

5 Evaluate the double integral .,ty dx dy ,, where IT is the region bounded by the x-axis, the line $y=2 x$ and $t \quad$ parabola $x^{2}=4 a y$.

6 If a is a constant vector,an $\quad x i+y j+z k$ then prove that $a x(a x i=)$
7 Test whether the vectors $(1,0,0),(0,2,0),(0,0,3)$ are linearly independent or not.
8 Find all values of A for which rank of the matrix.
is equal to 3 .
9 Test the convergence of the series $\quad\left|\frac{(1+n x)^{\prime}}{n^{n}}\right|$
10 Show by an example that every convergent series need not be absolute convergent.
$2-$
PART - B (50 Marks)
11 a) State and prove Lagrange's mean value theorem.
b) Find the evolute of $x^{2}=4 a y$.

12 a) Find the shortest distance between the line $y=10-2 x$ and the ellipse ${ }^{x L} \quad y=$

13 a) Show that the vector field defined by
e vector function $x y z(y z i+x z j+x y k)$ is conservative.
b) Show that $J\left(y z O d x+\left(z+x z+z^{2}\right) d y+(y+2 y z) d z\right.$ is independent of the path of integration from $(1,2,2)$ to $(2,, 3 ; 4)$. Evaluate the integral.

14 a) Prove that eigen values of Hermitian matrix are real ii) a skew-Hermitian matrix are zero or purely imaginary.
b) Examine

$$
A=\left[\begin{array}{ccc}
1 & 0 & i \\
0 & 1 & 0 \\
-i & 0 & 3
\end{array}\right] \text { is positive definite. }
$$

15 a) Discuss the convergence of the series L

$$
\frac{1.35 .(2 n=1)}{2 \cdot 46 . .(2 n) 2 n}
$$

b) Testthe convergence of the series $1+3 x+5 x^{2}+7 x^{3}+$

16 a) State and prove Cayley Hamilton theorem.
b) Find the eigen values and the corresponding eigen vectors.

$$
\begin{array}{rlll}
A= & 2 & 1 \\
-1 & 2 & 2
\end{array}
$$

17 a) If $x=r$ case, $y=r$ sine Y; then find $\quad a^{12}{ }^{\boldsymbol{\epsilon}}$ ar
b) If $u=\log \left[x^{2}+x y+y^{2}\right]$ then find $\underset{* * * * * *}{x_{a x}^{\text {air }}} y_{\text {ay }}^{\text {aii }}$

