

www.FirstRanker.com

www.FirstRanker.com

Code No. 9003 / 0

FACULTIES OF ENGINEERING & INFORMATICS

B.E. I - Year (Old) Examination, May/ June 2015

Subject : Mathematics - II

Time : 3 hours

Max. Marks : 75

Note: Answer all questions from Part-A. Answer any FIVE questions from Part-B.

PART A (25 Marks)

Form the differential equation by eliminating the arbitrary cons ppt 'c' from the family of curves $y = c(x c)^2$.	2
2 Solve $y = x \frac{dy}{dx} = 3 \left(1 - x\right) \frac{dy}{dx}$	3
3 Solve ${}^{(D_4)}$ +8D ² + I 6)y = 0, where D dx	2
4 Find the particular integral of $(0^4 - aly = x^4)$. 5 Find the Laplace transform of f(t) = cos(at+b) whereb, b are any two constants. 6 Find the inverse Laplace transform of $F(S) = \frac{S^{+6}}{S^{+}+65+13}$	3 2 3
7 Classify the singular points of the differential equation $x^{3}y'' + 3x y' + 6y = 0$	2
8 Express f(x)=3P3(x)+2P2(x)1741(X)t5P ₀ (x) as a polynomial in x, where P _m (x) is the legendre polynomial of pr Orin:	3
9 Evaluate $f(x - a)^{-1}$ x interms of beta function, where m,n,a,b are	
positive constants.	2
10 Evaluate (,, <i>krt</i> *AA.	3
PART B (50 Marks)	
11 a) Solve. $\cos x \cdot \frac{dy}{dt} + y = \tan x$	5
 b) Obtain the general solution and singular solution of the following Clairaut's equation. 	5
Y x y	
12 a) Find the general solution of the differential equation	5
$y'' + 4 / + 4y = 6 e^{-2x} \cos \theta$	
b) Find the general solution of the differential equation y" + 4y = sec 2x, by the method of variation of parameters.	5

www.FirstRanker.com

www.FirstRanker.com Code No. 9003 / C.;

2	
13 a) Solve the initial value problem $y'' - 4 - + 5y \ \mathcal{B}(t - 3), \ y(0) = 0, \ y'(0) = 0.$	5
b) Find the inverse Laplace transform of $F(S) = \frac{1}{(z \pm 1)}$ by using convolution	
theorem.	5
14 Obtain the series solution of the equation x y'' + xy = 0 about x = 0 by the Frobenius method.	10
15 a) Evaluate the improper integrals using Gamma function	5
i) $E^{x^2} dx$	
ii) f (7×3 d.)C	
b) State and prove the orthogonality of Chebyskev polynomials TO).	5
16 a) if the population of a country doubles in 0 years, in how many years will it treble under the assumption that thdlate of increase is proportional to the number of inhabitants.	
b) Solve $\frac{dY}{dx^2} 2 \frac{dY}{de} + y =$	5
17 a) Find the Laplace transform of the function sin/if < 7/ $0 ext{if} < t < 2.7r$ and the period of f(t) is 2n.	5
b) Show that (2n+1)x P _r ,(x) = (n+1) P _n +1 (x) +nP _n _1(x) where P _{ii} (x) is the Legendre polynomial of degree n.	5
www.First	