FACULTIES OF ENGINEERING \& INFORMATICS

B.E. I - Year (Old) Examination, May/ June 2015

Subject : Mathematics - II

Time : 3 hours

Max. Marks : 75
Note: Answer all questions from Part-A. Answer any FIVE questions from Part-B.

PART A (25 Marks)

1 Form the differential equation by eliminating the arbitrary cons ppt 'c' from the
\quad family of curves $y=c\left(\begin{array}{ll}x & \text { 2 }\end{array}\right.$.
2 Solve $y \times \frac{d y}{d x}=3{ }^{(} 1-x^{2} \frac{d y}{d x}$
3 Solve ${ }^{\left(D_{4}+8 D^{2}+I 6\right) y=0 \text {, where } D \quad d x} 2$
4 Find the particular integral of $\left(0^{4}-\right.$ aly $=x^{4}$. 3
5 Find the Laplace transform of $f(t)=\cos (a t+b)$ whereb, b are any two constants. 2
6 Find the inverse Laplace transform of 3

$$
F(S) \frac{\underline{S}+6}{\bar{s}^{\prime}+65+13}
$$

7 Classify the singular points of the differentialequation

$$
x^{3} y^{\prime \prime}+3 x y^{\prime}+6 y=0
$$

8 Express $f(x)=3 P 3(x)+2 P 2(x) 1741(X) t 5 P_{0}(x)$ as a polynomial in x, where $P_{m}(x)$ is the legendre polynomial of'pr Orin:

9 Evaluate $f(x-a)^{-1} \quad x$ interms of betafunction, where m, n, a, b are positive constants.
10 Evaluate $d_{1,} k r t *_{A A}$.

PART-B (50 Marks)

11 a) Solve. $\cos x \cdot d y+y=\tan x$
b) Obtain the general solution and singular solution of the following Clairaut's equation.

$$
Y \times y \quad-2
$$

12 a) Find the general solution of the differential equation

$$
y^{\prime \prime}+4 /+4 y=6 e^{-2 x} \cos
$$

b) Find the general solution of the differential equation $y^{\prime \prime}+4 y=\sec 2 x$, by the method of variation of parameters.
www.FirstRanker.com

13 a) Solve the initial value problem

$$
y^{\prime \prime}-4-\quad+5 y \boldsymbol{8}(\boldsymbol{t}-3), y(0)=0, y^{\prime}(0)=0 .
$$

b) Find the inverse Laplace transform of $F(S) \sum_{z^{2}}^{=}$by using convolution theorem.

14 Obtain the series solution of the equation
$x y "+\quad x y=0$ about $x=0$ by the Frobenius method.
15 a) Evaluate the improper integrals using Gamma function

i) $E^{x 2} d x$
ii) $\mathbf{f}\left(7^{\times 3} \mathrm{~d}\right.$.) c
0.
b) State and prove the orthogonality of Chebyskev polynomials TO).

16 a) if the population of a country doubles in 0 years, in how many years will it treble under the assumption that thdlate of increase is proportional to the number of inhabitants.
b) Solve ${ }_{d x^{2}}^{d 2 Y} 2 \frac{d Y}{d e}+Y=$

17 a) Find the Laplace transform of the function

$$
\begin{aligned}
& \sin / \text { if } \quad<7 t \\
& 0 \quad \text { if }<\mathrm{t}<2.7 r
\end{aligned}
$$

b) Show that $(2 n+1) x P_{r}(x)=(n+1) P_{n}+1(x)+n P_{n-} 1(x)$ where $P_{i i}(x)$ is the
Legendre polynomial of degree n.

