

www.FirstRanker.com

www.FirstRanker.com

Code No. 9004 / **0**

FACULTY OF ENGINEERING AND INFORMATICS

B.E. I — Year (Old) Examination, May / June 2016

Subject Engineering Physics

(Common to All Branches)

Time: 3 hours

Max. Marks : 75

Note: Answer all questions from Part-A. Answer any FIVE questions from Part-B.

PART — A (25 Marks)

1 Explain the basic principle of halography.	(2)
2 A monochromatic light of wavelen9th 6500Ű falls normally on a g. The first order spectrum is observed at 15' from the mean position. palpu ateS.:the grating element.	(3)
3 Distinguish between Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac statistics.	(³)
4 Which of the following is not a Maxwell equation.	(2)
a) $V XII = ab$ at b) $V B = 0$ c) $\nabla \cdot E = 0$ d) $V XE = -aB$ at	
5 The distance between the adjacent planes Ota sit of parallel planes of indices (h, k I) for simple cubic crystal is	_(2)
6 What is Meissner effect? Explain its ikpOince.	(2)
 7 Match the following : 1 Fibre optics 2 Statistical Mechanics 3 Crystallography 4 Solar cells 5 Superconductivity a) Miller indices b) Photovoltaic effect c) BCS theory d) Total internal reflection e) Thin films f) Planck's radiation g) Polarization 	(³)
A) 1 d, d, 3 a, 4 a, 5-c B) I- d, 3 - g, 4 c, 5 d C) f, 3 a, 4 - b, 5 - c D) f, 3 - c, 4 - d, 5 - f	
8 What ko Type-I and Type-II superconductors?	(³)
9 What is X-ray Fluorescence? Explain.	(2)
10 The hall coefficient (RH) of a semiconductor is $3.22 \times 10^{-4} \text{ m}^3 \text{ C}^{71}$. Its resistivity is $9 \times 10^{-3} 0 \text{ m}$. Determine the type of semiconductor and its charge concentration.	(3)
PART — B (50 Marks)	
11 a) Distinguish between interference and diffraction.b) Explain the method to determine the wavelength of light used by ciffraction grating.	
12 a) Define numerical aperture, acceptance angle and obtain an expression for numerical aperture.b) Distinguish between step index and graded index fibres.	

www.FirstRanker.com

Code No. 9004 0

..2..

- 13 Describe in detail the theory of a particle in an infinite square well potential.
- 14 What is Schottkey defect? Derive the expression for the concentration of Schottkey defects in an ionic crystal.
- 15 a) Based on conductivity, classify the solids into conductors, semiconductors and insulators.
 - b) What is thermistor and explain the working of a thermistor?
- 16 a) What are Ferritas? Explain their structure.b) Discuss the Weiss theory of ferromagnetism.
- 17 a) Describe the CVD method for the preparation of thin fil
 - b) Describe the principle and working of Scanning Electr Microscope (SEM).

