Code No. 9356 / N

FACULTY OF ENGINEERING

B.E. I — Year (New) (Main) Examination, May / June 2015
Subject : Mathematics - II

Time : 3 Hours

Max. Marks: 75
Note: Answer all questions from Part - A and answer any five questions from Part_B.
PART - A (25 Marks)
1 Find the values of a and b such that $\left(3 a x^{2}+2 e Y\right) d x+(2 b x e Y+3 y) d y=0$ is exact.
2 Obtain the general solution of the Clairaut's equation $y=x y^{\prime}+\left(y^{\prime}\right)^{3}$
3 If $y i=e^{2 x}$ is a solution of $y "-5 y^{\prime}+6 y=0$, find the second linearly independent solution.
4 Find a particular integral of (D2-1) $y=x 4$.
5 Does the differential equation $x^{3} y^{\prime \prime}+x y^{\prime}+y=0$ have a Frobenius-series.solution about $x=0$? Give a reason.
6 Using Rodrigue's formula, find P2(x).
7 Define error function. Prove that $\operatorname{erf}(-x)=-\operatorname{erf}(x)$.
8 Evaluate $x^{4} J_{3}(x) d x$ in terms of Besse' functions.

9 Find \llcorner \qquad
10 Find the inverse Laplace transform

> PART — B (50 Marks)

11 (a) Solve $\left(x^{3}-2 y^{2}\right) d x+2 x y$
(b) If the temperature of airgis: $0^{\circ} \mathrm{C}$,:pnd a body cools from $140^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$ in 20 minutes, find when the temperature will be $35^{\circ} \mathrm{C}$.
12 (a) Solve $y^{\prime \prime} y^{\prime} 6 y x e^{-2 x}$
(b) Find the solution of the system of equations
$\frac{d v}{d i}=y,+y_{2}, \frac{d a y_{1}^{\prime}}{d i}=9 y,+y_{\text {, }}$
13 Find the poweseries solution of the differential equation $(1+x) y^{\prime \prime}+y^{\prime}+3 y=0$ about x 0 .

14 (a) EVNU4te sin B cos'0 do using Beta and Gamma functions.
(b) Prove that $1,{ }_{2}(x)={ }_{T x} \sin x$

15 (a) Find $\mathrm{L}\left\{\mathrm{e}^{-2 \mathrm{t}}(2 \sin \mathrm{H}-4 \cosh \mathrm{t})\right\}$.
(b) Solve $y^{\prime \prime}+2 y^{\prime}-3 y=0, y(0)=0, y^{\prime}(0)=4$ using Laplace transforms.

16 (a) Find the orthogonal trajectories of the family of curves $r^{i} \operatorname{cosn} 0=a^{n}$, a is the parameter,
(b) Solve $x^{3} y^{\prime \prime \prime}+4 x^{2} y^{\prime \prime}+\underset{2}{2 x y^{\prime}}-2 y=0$.

17 (a) Prove that $\mathrm{f} \quad(x) d x$
(b) Find L^{-} \qquad

$$
\begin{equation*}
2 / 7+1 \tag{}
\end{equation*}
$$

(b)
using convolution theorem,

