

www.FirstRanker.com

www.FirstRanker.com

Code No. 60051 M

FACULTY OF ENGINEERING & INFORMATICS B.E. I Year (Main) Examination, June 2014

Subject : Engineering Chemistry

Time 3 Hours

Max. Marks: 75

Note: Answer all questions of Part - A and answer any five questions from Part-B. PART — A (25 Marks)

1 Give success and limitations of law and II law of thermodynamics.	(³)
2 Explain why entropy change is zero for reversible process and entropy change is	. ,
positive for irreversible process for the same state change.	(³)
3 Differentiate between primary and secondary battery.	(³)
4 Derive Nernst equation using equation relating AG and AG	(3)
5 Explain the formation of anodic areas on the surface of metallic materials through	
differential aeration and contact with different metals with reactions.	(³)
6 Explain break point chlorination with the help of graph.	(2)
7 Write the chemical equation for preparation of Bakelite.	(2)
8 What is conducting polymer? Give two examples.	(2)
9 Give the relationship between Higher calorific value (HCV) and Lower calorific value (LCV). (2)	
10 Explain Octane rating.	(2)
PART — B (50 Marks)	
11 (a) Derive and compare isothermal reversible work expression with adiabatic	
reversible work expression.	(6)
(b) A reversible carnot cycle does work equivalent to 150 K J per cycle if heat supplied	
by cycle is 225 kJ at 227 C per cycle calculate	
(i) the temperature at which heat is rejected (ii) thermal efficiency of engine	(4)
12 (a) What are fuel cells? Explain' with an example and give their advantages.	(⁵)
(b) What are different types of electrodes ? Explain with their electrode reaction and	_
electrode potential equation.	$\binom{5}{(5)}$
13 (a) Discuss the factors affecting the rate of corrosion.	(6)
(b) Describe electroplating of Nickel.	(4)
14 (a) Give the attraction of non-mosets and thermoplastics.	(5)
(D) Give the structure of monomer of natural rubber and discuss the vulcanization of	<i>(</i> F)
rubber and properties of vuicanized rubber.	$\binom{3}{3}$
(a) Give requirements of a good rule.	(3)
(b) Discuss the determination of calornic value of fuels by Bomb calorimeter with heat	(7)
uldyidii diu corrections.	(')
method.	(5)
(b) Derive Calusius-Clapeyron equation for liquid vapour equilibrium and discuss its	. ,
applications.	(⁵)
17 (a) Discuss principle and method of potentiomentric acid-base titrations.	(6)
(b) Give construction, and working of dry cell.	(4)

www.FirstRanker.com