

www.FirstRanker.com

Code No. 6007

FACULTY OF ENGINEERING & INFORMATICS

B.E. I — Year (Suppl.) (Common to all Branches) Examination, December 2013

Subject: Engineering Mechanics

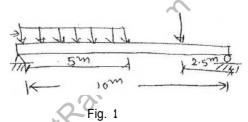
Time: 3 Hours

Max. Marks: 75

Note: Answer all questions from Part A. Answer any five questions from Part B.

PART – A (25 Marks)

- 1. State and prove the parallelogram law.
- 2. State the Lami's theorem.
- Determine the force 'p' required for the block has to move towards right, if the coefficient of friction between block and surface is 0.3.
 (2)


Differentiate between static and dynamic friction.	(2)
 Acceleration of a particle is given by a = 6 -\ iwherelvl is velocity derive the expression for displacement of the particle. 	(³)
6. State the Pappu's theorem.	(3)
7. Motion of the particle is given by $s = t^3 - 12t^2 + 40$. Find out the acceleration of the	(-)
particle in 10 sec.	(3)
8. State D'Alember'ts principle.	(3) (2)
Derive the work-energy principle.	(2)
10. Differentiate direct and oblique impact.	(³)

PART _ B (50 Marks)

11 (a) Find the reactions of the simply supported beam as shown in Fig. 1

(5)

(3) (2)

(b) Find the magnitude of `T' required for the beam to be **in** equilibrium, if it is resting on smooth surfaces. (5)

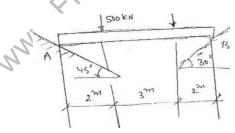
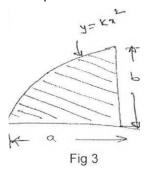



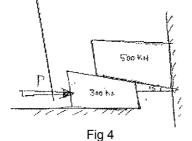
Fig 2

12. Locate the centroid of a non-linear plate as shown in Fig. 3.

(10)

www.FirstRanker.com

FirstRanker.com


www.FirstRanker.com

..2..

www.FirstRanker.com

13. Find the force 'pl required for the wedge block as shown in Fig. 4 if the coefficient of friction at all the contact surfaces is 0.3.

14. Calculate the moment of inertia for a hatched area about XX.

(10)

(10)

2.5.355

Sooki

X

15. Find out the acceleration of block 'B' required for the connecting bodies as shown in Fig. 6 if the kinetic friction under 200 kN block is 0.2.

(10)

Fig 6 16. Determine the deformation of the spring as shown in Fig. 7, if 50 N weight of block is releases from the rest. (Use work-energy principle)

Fig 7

(2)

(10)

17 (a) State the principle of impulse momentum
(b) A bullet weighing 0.3 N and moving with a velocity 660 nips, penetrates a wooden block of weight 45 N and emerges with a velocity of 180 mps as shown. How long the block moves?

