

www.FirstRanker.com

www.FirstRanker.com

Code No. 2007

## FACULTY OF ENGINEERING and INFORMATICS

## B.E. I — Year (Common to All) (Main) Examination, June 2013

**Subject : Engineering Mechanics** 

Time : 3 hours

Max. Marks : 75

Note: Answer all questions from Part-A. Answer any FIVE questions from Part-B.

## PART \_ A (25 Marks)

| 1.  | State the Triangular law for concurrent co-planner force system.                                                                                        | (2)              |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 2.  | Write the static equilibrium equations for non-concurrent co-planner force system.                                                                      | (2)              |
| 3.  | Define the angle of friction.                                                                                                                           | (2)              |
| 4.  | State the parallel axis theorem.                                                                                                                        | (3)              |
| 5.  | Derive the impulse momentum equation.                                                                                                                   | (3)              |
| 6.  | State the PAPPU's theorems.                                                                                                                             | (3)              |
| 7.  | The motion of a particle is given by the equations                                                                                                      | ( <sup>3</sup> ) |
|     | S = $V^{I}$ — 12t <sup>2</sup> — 40, where s is displacement in meter and t is sec. Determine the acceleration of particle after 2 sec.                 |                  |
| 8.  | State D' Alembert's principle.                                                                                                                          | (2)              |
| 9.  | Derive the mass moment of inertia for a rectangular place with thickness t and density S.                                                               | (3)              |
| 10. | Derive the work-energy principle.                                                                                                                       | (2)              |
| 11  | a) The moment of a certain force 'F' is in clockwise about '0' and 90N-m counter clockwise about B If is moment about 'A' is zero. Determine the force, | ( <sup>5</sup> ) |
|     | A 1<br>3 <sup>m</sup>                                                                                                                                   |                  |

Fig-1

6 34

0

g



## www.FirstRanker.com

Code No. 2007

11.b) Find the resultant for concurrent co-planar force system as shown in fig.2. (5)



7

12, Locate the Centroin of the hatcher plate about the axis as shown in fig.3. (10)



A 100N cylinder shown in fig.4 is held at rest by a weight suspended from chord wrapped around the cylinder if the sliping impends between the cylinder and the inclined, determine the value of `P' & also the co-efficient of Frichon. (10)



14. Calculate the product of inertia for a shaded area as shown in fig.5 with respect to given x — y axis. (10)





www.FirstRanker.com

www.FirstRanker.com

Code No. 2007

3

15. Derive the expression for the acceleration of a block as shown in fig if (10)

Case 1: is a frictionless pully

Case 2 : friction pully

ON2 > WO



16. A cahin of length 'LI and wesling w/m-run is released from rest on a smooth table when it is (10)



In the position as shown in fig. Determine the velocity of the chain while lost link leaves the table.

17. Write a short note on

| a) Compound pendulum                | (4) |
|-------------------------------------|-----|
| b) Rectilinear & curvilinear motion | (3) |

c) Radius of gyration and instantaneous centre of rotation (3)