Code No. 2007

FACULTY OF ENGINEERING and INFORMATICS

B.E. I - Year (Common to All) (Main) Examination, June 2013

Subject : Engineering Mechanics

Time : $\mathbf{3}$ hours

Max. Marks : 75

Note: Answer all questions from Part-A. Answer any FIVE questions from Part-B.

PART _ A (25 Marks)

1. State the Triangular law for concurrent co-planner force system.
2. Write the static equilibrium equations for non-concurrent co-planner force system.
3. Define the angle of friction.
4. State the parallel axis theorem.
5. Derive the impulse momentum equation.
6. State the PAPPU's theorems.
7. The motion of a particle is given by the equations
$\mathrm{S}=\mathrm{V}^{\mathrm{I}}-12 \mathrm{t}^{2}-40$, where s is displacement in meter and t is sec. Determine the acceleration of particle after 2 sec .
8. State D' Alembert's principle.
9. Derive the mass moment of inertia for a rectangular place with thickness t and density S .
10. Derive the work-energy principle.

PART - B (50 Marks)
11.a) The moment of a certain force ' F ' is in clockwise about ' 0 ' and $90 \mathrm{~N}-\mathrm{m}$ counter clockwise about B. If is moment about ' A ' is zero. Determine the force,

Fig-1
www.FirstRanker.com
11.b) Find the resultant for concurrent co-planar force system as shown in fig.2.

12, Locate the Centroin of the hatcher plate about the axis as shown in fig.3.

13. A 100 N cylinder shown in fig. 4 is held at rest by a weight suspended froma chord wrapped around the cylinder if the sliping impends between the cylinder and the inclined, determine the value of ' P ' \& also the co-efficient of Frichon.

14. Calculate the product of inertia for a shaded area as shown in fig. 5 with respect to given x - y axis.

Fig-5
15. Derive the expression for the acceleration of a block as shown in fig if

Case 1: is a frictionless pully
Case 2 : friction pully
ON2 > WO

16. A cahin of length ' L l and wesling w / m-run is released from rest on a smooth table when it is

In the position as shown in fig. Determine the velocity of the chain while lost link leaves the table.
17. Write a short note on
a) Compound pendulum
(4)
b) Rectilinear \& curvilinear motion
(3)
c) Radius of gyration and instantaneous centre of rotation

