

www.FirstRanker.com

Code No. 5004/N

[Max. Marks: 75

FACULTY OF ENGINEERING AND INFORMATICS B.E. I Year (New) Common to all Brinches (Suppl.) Examination, January 2012 ENGINEERING PHYSICS

Time: 3 Hours]

Note : Answerall questions from Part A, answerany five questions from Part B.

1. How many orders will be observed by a grating having 4000 lines per cm if it is illuminated by visible light in the range 4000 A and 7000 A .

PART-A

2. Match the following :

	 The inner most part of optical fibre In Graded index fibre Laser beam is made of Hologram is related to 				If (a) Refractive index of core increases towards the axis of the core (b) Interference (C) Core (d) Highly coherent photons (e) Electrons (f) Non-uniform refractive index B) 1 c. 2 a. 3 - d. 4 - b			
	C) 1 - d, 2	c, 3 a,	4-f	D)1-	b,2c,3	8-d,4e	•	2
2	The energy (of an elect	tron conta	ined to mov	e in 2 one	_dimensio	nal hox of length	
J.		34×10^{-17}	. Find or	it the order	of excited	state	nai box of length	2
	4.07 15 9.00	μ Α 10	0. 1 110 00			State.		-
4.	What is displ	acement	current?	Explain.				2
5.	1) The Miller	indices of	a set of p	arallel plan	es which n	nake equa	l intercepts on the	
•	three axes are							1
	a) (121)	b) (111)	c) (10	0) d) (101)		
	ii) In a simp	le cubic la	attice the r	ratio of d 10):d ₁₁₀ :d	, is		2
	a) " <i>i</i> 6	· At"	b))6:	: Nri	d) 6 : 3 : 1	
		. / .	~,	·	, • -		,	
Thia	s naner contains 2 na							P.T.O.

(This paper contains 2 pages)

(25 Marks)

3

FirstRanker.com

www.FirstRanker.com

Code No. 5004/N 6. Mobilities of electrons and holes in a sample of intrinsic Ge at 300 K are $0.36 \text{ m}^2 \text{ V}^{-1}\text{S}^{-1}$ and $6.17 \text{ m}^2 \text{ V}^- \text{ S}^-$ respective VetSt. if the resistivit of the specimen is 2.12 L² m, compute the intrinsic concentration of carriers for Ge. Where $m_e 0.5 m_o$ and $m_h 0.37 m_o$ 3 7. Draw the crystal structure of Barium titanate above 393 K and explain how its structure and polarization changes with decreasing temperature. 3 8. Define the terms critical temperature, critical magnetic field and critical current. 3 9. What are carbon nano tubes ? Explain. 2 10. Explain the basic principle used in atomic force microscopes. 2 PART B (5x10=50 Marks) 11. What is optical activity ? Explain construction and working of Larentz's half shade polarimeter. 10 12. a) Explain what is phase-space. (2+2+6)b) Distinguish between Basons and fermions. Obtain the expression for Fermi-Dirac distribution law. 13. a) Show that among SC, B.C.C. and FCC, FCC has closed paCked structure. 5 b) Obtain an expression for the concentration of Schottkey defects in an ionic crystals. 5 14. a) What are dielectrics ? Explain Various electrical polarization mechanism. 6 b) Distinguish between soft and hard magnetic materials. 4 15. a) Distinguish between bulk, thin film and nano-scale materials. 3 b) Explain the thermal evaporation method of depositing thin films. 7 16. a) Describe the classification of optical fibres. b) Write down the Maxwells equations and deduce an expression for the velocity of propagation of a plane electro magnetic wave in homogeneous, isotropic dielectric medium. 6 17. Write a note on : a) LED. 5 b) High temperature super conductors. 5 2 2,400