FACULTY 01? ENGINEERING \& INFORMATICS

B.E. 1 Year (New) (Common to all Branches) (Main) Examination, June 2011 MATHEMATICS - IY

Time : 3 Hours]
[Max. Marks : 75
Note : Answer., all questions from Part - A. Answer any five Questions from Part - B..

> PART - A
(Marks 25)

1. Eliminate the arbitrary constants from

$$
y=a e x+b e^{2} x
$$

and form differential equation.
2. Solve, $\left(3 x^{2}+2 e Y\right) d x+\left(2 x e Y+3 y^{2}\right) d y=0$.
3. Show that the set of function $\left.x^{\prime} k\right\}$ from series' of the equation
$x^{2} y^{\prime \prime}+x y^{\prime}-y=0$
Solve $y^{\prime \prime} \quad>\overline{0, y}(0)=0, y^{\prime}(0)-2$.
Z. Define singular and regular singular points.

Show that $\mathbf{P}_{2}(u)=\mathbf{2}\left(\mathbf{3} u^{2}:-1\right)$

Find the value 'of [11
8. Find the solution of the differentialequation $x^{2} y^{\prime \prime}+A y^{\prime}+\left(x^{2}-\frac{1}{16}\right) y=0$ in terms of Besselis function:
9. Find Laplace transform dft sinh t .
10. Find inverse Laplace transform of $6+2$
$s^{2}-4 s+3$
PART - B
(Marks $5 \times 10=50$)
11. (a) Find the integrating factor and hence solve the differential equation

$$
\left(x^{2}+y^{2}\right) d x-2 x y d y=0
$$

(b) Show that the family of curves

12. (a) Find the general and the singular solution of Clairaut's equation

$$
Y=x Y^{\prime}\left(O^{3}\right.
$$

(b) Solve the critical value problem

$$
y^{\prime \prime}+3 y "-4 y=0, y(0)=1, y^{\prime}(0)=0, y^{\prime \prime}(0)=1 / 2 .
$$

13. (a) Find the genei al solution of $y^{\prime \prime}+3 y^{\prime}+2 y=2 e x$.
(b) If $y .=e^{2} x$ is the one of the solutions of y " $\quad-6 y=0$, find other solution by reducing the order of the differential equation.
14. Find the series solution about $x=0$, of the differential equation $x(1+x) y^{\prime \prime}+$ $3 x y l+y 0$.
15. (a) Prove that :

$$
\left.(n+1) p_{n} i_{4} i(x) . \neq 2 n+1\right) x p_{n}(x)
$$5

(b) Prove that'A(m;14 $22 m-1 \mathcal{B}\left({ }_{\mathrm{rr}} \mathrm{i}^{\prime} ; \quad 5\right.$
16., (a) Express the integral $\quad \underline{d x} \quad$ in terms of Gamma functions.
(b) grove that

$$
\text { hat } x \quad{ }^{2}
$$

$$
(x) \cdot 1=\underset{21^{11}}{ }\left[j_{n-1}^{2}\left(x^{*}\right)_{-}^{\bullet}-\right]^{2},(x)
$$

-17. (a) Using convolutipn theorem, evaluate

$$
\left.\mathrm{L}-1 \frac{1}{v s, 1)(.+9)}\right)
$$

(b) Splve, $\frac{d y}{d t 2}+2 \cdot \frac{\mathrm{Lly}}{\mathrm{dt},-3 y}=\sin \mathrm{t}$,

$$
\mathrm{y}=\mathrm{dt}^{-}-0, \text { when } \mathrm{t}=\theta \text {, using Laplace transform. }-
$$

