Code No. : 3317/N

FACULTY OF ENGINEERING \& INFORMATICS

D.E. I Year (New) (Common to all branches) (Main) Examination, June 2011 ENGINEERING MECHANIC
Time : 3 Hours I
[Max. Marks: 75
Note : Answer all questions from Part - A. Answer any five Questiona from Part-13.

> PART A
(Marks a 25)

1. State Lami's theorem. 2

What are the different conditions of equilibrium $9 \quad 2$
3. State Pappu's Theorem 1 and 3
4. Differentiate static friction and dynamic friction.

State perpendicular axis theorem.
6. The notion of a particle is defined by the relation $x=t^{4} 12 t^{2}-40$. Where x is expressed in metres and t in sec. Determine the position velocity and acceleration when $\mathbf{t}=\mathbf{5} \mathbf{~ s e c}$.

Determine the force P that will give the body, shown below an acceleration of $\mathbf{0 . 2 5} \mathbf{~ g}$. mise ${ }^{2}$. The coefficient of kinetic friction is 022 .

Derive work-energy principle.
9: A body .weighing 80 Nis pulled up on a smooth plane by a force ' 1 을 shown. Determipe the velocity-of jhe block -after ' 5 sec .

10. Differentiate direct central impact and oblique central impact.

PART - B
(Marks : 50)
11. (a) Find the tesultant of a system of force. 1.5 N .6 N

(b) A bar. 12 m long and of negligible weight is acted upon by forces as shown in Fig. Determine angle 0 for equilibrium of bar

12. A circular disc of 250 , mm radiue is removed from a circular disc of 500 mm radius as shown.below. Cehtre, of both lines are on same 'horizontal line ${ }_{r}$ centrolq.

13. Block A weighing 1100 N rests over block E3 thaweights 2200 N as shown. Blbck A is tied to wall with a horizontal string. If M between A and B is $1 / 4$ and between B and $f l o o r$ is $1 / 3$. What should be the value of P to move the block B if
(a) P is horizontal
(b) P acts 40° upwards to horizontal ?

www.FirstRanker.com
14. Find the product of inertia for hatched area about the axes $X Y$ and y.
10 mm

15. An elevator of gross weight of 5 kN starts to more upwards with a constant acceleration and acquires a velocity of $2 \mathrm{~m} / \mathrm{sec}$ after travelling a distance of 3 m . Find the pull in cable during accelerated motion. If the elevator while stopping moves with a constant deceleration from a constant velocity of 2 misec and ,comes to rest in 2 sec . Calculate the pressure exerted by a man weighted: up: 800 N to the floor'during stopping.

16: Two bodies of weight $\mathrm{W}_{\mathrm{A}}=850 \mathrm{~N}$ and $\mathrm{W}_{\mathrm{B}}=500 \mathrm{~N}$ are connected to the two ends of light inextensible string, passing over smooth pulley. The weight W_{A} is placed on rpugh horizontal surface whose co-efficient of friction is 0.25 and W_{B} is hanging vertically in air. If the system is released from rest and block ' B ' falls through a vertical distance of 2.5 m ; dete rmine the yelocity attained by ${ }^{4} 13 ; 3$
17. (a) State the principle of impulse momentum.
(b) Three balls A, B and C masses 12.5 kg, ' 26 kg and 55 kg respectively move along the same straight line and in the; 'same direction with v , elocities of $16 \mathrm{~m} / \mathrm{sec}, 4 \mathrm{~m} / \mathrm{sec}$ and $3 \mathrm{~m} / \mathrm{sec}$. if 'A' collides with ' 13 ' and subsequently 13 ! collides with C.. Find the final velocities. Assume perfectly elastic impacts.

