

www.FirstRanker.com

www.FirstRanker.com

a. RS

ь. R*

b. grammar

is a set of strings

a. Language

Q. 1 Select the correct option.

c. NFA

Let r and s are regular expressions denoting the languages R and S. Then (r s) denotes ___

c. RUS

In transition diagrams a state pointed by an arrow represents the b. interior c. start d. final or start state.

grammar is also known as Type 3 grammar b. context free c. context sensitive

d. regular gramma

Grammar that produce more than one Parse tree for same sentence is: a. Ambiguous b. Unambiguous c. Complementation d. Intersection

S ↓ a is which grammar?

 a. Right Linear Grammar
 b. Left Linear Grammar c. Linear Grammar d. None of the abo

Q.2 Solve Any Two of the following

Construct the DFA ($\Sigma = 0,1$)

B

i) w= Strings starting and ending with same characters

ii) w= string with "101" as substring

Consider following Grammar:

₿

A→ OA | epsilon
B→ 1B | 0B | epsilon
Give the leftmost derivation for the inputs:
1) 00101 2)1001

(C) Construct the regular Grammar for the given finite Automata:

Page

www.FirstRanker.com

Duration: 1 Hr. Subject Code: BTCOC502

6*1=6 N

Course: B. Tech in Computer Sci. & Engineering

DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE

Mid Semester Examination - Oct 2019

Subject Name: Theory of Computation

Max Marks:20

Date:- 24th Sept 2019

Instructions to the Students:

Figures to the right indicate marks

Assume suitable data

www.FirstRanker.com

www.FirstRanker.com

. 1

8.		b*	d 4	state
-	(8)	3	{q,r}	0
{p}	(p)	{q,r}}	{b}	1

P *	9 0	d d	+ 2	state	
{b}	(b)	{c}	{a,b}	0	
(b)	-	{c}	{a}	11.	
_					

(B) Convert Following NFA to DFA

1)

state

b

(a)

Page | 2

www.FirstRanker.com

Q. 3 Solve Any One of the following.
(A) What is pumping lemma technique?

Using pumping lemma show that $L = \{a^n b^n \mid n \ge 1\}$ is not regular language.