

DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE Mid Semester Examination - Oct 2019

Course: B. Tech in - Chemical

Subject Name: Mass Transfer Operation-I

Max Marks: 20

Subject Code: BTCHC 502 Sem: III

Duration:- 1 Hr.

Instructions to the Students: All questions are compulsory

- Question one are compulsory
- Assume suitable data wherever required. Solve any two from question 2 and solve any one from question 3.

Attempt following Questions.

thermal c) concentration d) forced Ordinary diffusion process is also called diffusion. A) pressure b)

(Level/CO)

Marks

3. The reciprocal of stripping factor is termed as a) selectivity index b) relative 2. Schmidt number is given by----a) of Be.Pe c) Sh x Pe d) Re/Pe

Analysis

Application Evaluation

Remember

- Stanton b) Sherwood c) Peclet d) none of these volatility c) absorption factor d) Murphree efficiency (N_{Re} . N_{Se}) is termed in mass transfer operation as the number a)
- The partial pressure distribution of an ideal gas diffusing through another stagnant ideal gas at steady state follows a/an parabolic c) linear d) cubic law a) exponential b) Understand
- theory as a) $K \propto D$ b) $K \propto D^{0.5}$ c) $K \propto D^{1.5}$ d) $K \propto D^{1.5}$ 6. Mass transfer co-efficient (K) and diffusivity (D) are related according to film Understand
- Solve Any Two of the following
- What is process to Choose solvent for Absorption operation?
- Derive $J_A = -J_B$
- Explain term Cascade with their types
- Solve Any One of the following.

E

- Derive Material Balance Equation for countercurrent flow Absorption Operation
- Oxygen (A) is diffusing through carbon monoxide (B) under steady state conditions with

Evaluation Application

carbon monoxide non diffusing. The total pressure is 1 * 105 N/m2 and temperature 0°C. N/m². The diffusivity for the mixture is 1.87 * 10⁻³ m²/s. Calculate the rate of diffusion of The partial pressure of oxygen at two planes 2 mm apart is respectively, 13000 and 6500 oxygen in Kmol/s through each square meter of two planes.

CO-Quy, Mapping

Understand

Remember

Application