	. 1	1 .	1 1	1 .				rstRan	KCI.C	ΨΠ		www.F	ISIN	anke	I COIII		
	(B)	(A)	0.3	(C)	(5	(A)	Q.2	0	S	4		2	<u> </u>	Q. 1			
*** End ***	In an insulated Nozzle, enthalpy of fluid passing is 3000 kJ/kg and velocity is 60 m/s while at the exit the enthalpy reduced to 2762 kJ/kg. The nozzle is kept horizontal. If the inlet area is 0.1 m ² and specific volume at inlet is 0.187 m ³ /kg, determine the velocity at exit of nozzle and mass flow rate through the nozzle.	A turbine operates under steady flow conditions, receiving steam 1.2 MPa at 188 °C with enthalpy 2785 kJ/kg and velocity 33.3 m/s at elevation of 3 m. This steam leaves the turbine at 20 kPa with enthalpy 2512 kJ/kg and velocity 100 m/s with elevation 0 m. Heat is lost to the surrounding at the rate of 0.29 kJ/s. If the steam flow rate through the turbine is 0.42 kg/s, what is the power output of the turbine in kW?	the following.	Explain Clausius statement with scientific example of refrigerator	produce 70 J work. Determine the final Internal energy of the gas?		Solve Any Two of the following.	a) State Function b) Path Function c) Properties of System d) None of these	a) temperature in °C b) temperature in °F c) temperature in K d) None of these	a) Without Heat Gain b) Without Heat Rejection c) Without Work d) None of these	a) Constant Pressure b) Constant Volume c) Constant Temperature d) Constant Entropy	Thermodynamic equilibrium is a) Thermal Equilibrium b) Chemical Equilibrium c) Mechanical Equilibrium d) All of these	a) Extensive property b) Intensive Property c) Path Function d) None of these	Choose the correct answer.	 Instructions to the Students: Use of scientific calculator is permitted Draw schematic diagrams whenever necessary Assume suitable data if necessary Mark one correct answer for MCQs 	Subject Code: BT-MEC 305 Max Marks: 20 Date: - Oct. 9, 2019 Duration: - 1	Mid Semester Examination - SeptOct. 2019 Course: S.Y. B. Tech in Mechanical Engineering Sem: III Subject Name: THERMODYNAMICS
	CO3	CO3		C02	707	CO2		COI	C02	CO2	C03	C01	C01	(Tevel/CO)	(Tarallon)		