FR	FirstRa Firstranker	an 's ch	K E	er.	CC	B	(A)	Q. 3	(C)	(B)	(A)	w.201	v.Fi	rstR	lan	ker.c	om		· WV	vw.F	irst	Ran	ke f.	com	-			
		*** End ***	0.14 W/m k $C_p = 1.78$ KJ/Kg °C. assume flow to be laminar (and fully developed) Nu = 3.657	properties calculate the tube length required to cool the oil to 45 °C. Density = 865 Kg/m³, K =	m/s. Tube surface is maintained at 40 °C. Assuming that the oil has the following average	Lubricating Oil at a temperature of 60 °C enters 1 cm diameter tube with a velocity of 3	Derive expression for temperature distribution through hollow Sphere.	Solve Any One of the following.	Explain Boundary layer thickness and Displacement thickness.) Define Emissivity, and Total emissive power.	Describe Film Boiling.			Planck's law b) Kirchhoffs law c) Wien's law d) Stefan-Boltzman law	6. Which one gives the monochromatic emissive power for black body radiation	mean area b) Arithmetic mean area c) Geometric mean area d) None of these.	+	transmissivity = 1	3. For an ideal black body a) absorptivity = 1 b) reflectivity = 1 c) emissivity = 0 d)		v applies to the heat tr	a) film boiling b) nucleate boiling c) vanor binding d) None of these		<u> </u>	Max Marks: 20 Date:- Duration:- 1 Hr.	Subject Name: Heat transfer Operation Subject Code: BT	Course: B. Tech in - Chemical Sem: III	DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, L Mid Semester Examination – March 2019
													·									The second secon	(Level/CO)			COC403		LONERE
							•	∞				3 X X	v.F	rstR	lan	ker.c	om					0	Marks					