

hc	(er.	E		Q. 3	G	(B)	(A)	V)(9).2	v.Fi	irstR	an	ker.c	om		1	ww	w.Fir	stR	ank	e Ω	om				
Assa End Assa	properties calculate the tube length required to cool the oil to 45 °C. Density = 865 Kg/m², K = 0.14 W/m k C_p = 1.78 KJ/Kg °C. assume flow to be laminar (and fully developed) Nu = 3.657	Lubricating Oil at a temperature of 60 °C enters I cm diameter tube with a velocity of 3 m/s. Tube surface is maintained at 40 °C. Assuming that the oil has the following average	Derive expression for temperature distribution through hollow Sphere.	Solve Any One of the following.	Explain Boundary layer thickness and Displacement thickness.	Define Emissivity, and Total emissive power.	Describe Film Boiling.	Solve Any Two of the following.		Planck's law b) Kirchhoff's law c) Wien's law d) Stefan-Boltzman law	6. Which one gives the monochromatic emissive power for black body radiation	 which area is used in case or heat flow by conduction through a cylinder .a) Logarithmic mean area b) Arithmetic mean area c) Geometric mean area d) None of these. 	a) J/M°K b) W/m°K c) W/m°K d) J/m°K	4. The unit of heat transfer co-efficient in SI unit is	transmissivity = 1	3.For an ideal black body a) absorptivity = 1 b) reflectivity = 1 c) emissivity = 0 d)	2. Fourier's law applies to the heat transfer by a) convection b) radiation c) conduction d) all (a), (b) & (c)	ling d)	When vaporization takes place directly at the heating surface, it is called	Attempt following Questions.	All questions are compulsory. Question one are compulsory. Question one are compulsory. Solve any two from Question 2 and solve any one from question 3. Assume suitable data wherever required.	Max Marks: 20 Date:- Duration:- 1 Hr.	Subject Name: Heat transfer Operation Subject Code: BTCOC403	Course: B. Tech in - Chemical Sem: III	Mid Semester Examination – March 2019
		1			* * * * * *		1.5							\$7 1 1 Kg			1		100 may 100 miles	(Level/CO)			OC403		