_	uestion No.1 (Question (t-12)COM
A 0	solution with concentration 0.002 M, having molar absorptivity of 313 M ⁻¹ cm ⁻¹ kept in a call with ker.com 0 cm path length. The transmittance for the solution will be:
4.0	o cm path length. The transmittance for the solution will be .
(Λ) ○ 2.50
) ○ 10 ^{-2.50}
(D)	10
	(Correct Answer)
	$0 \circ 10^{2.50}$
(D	$0 \circ 10^{1.50}$
(E)) O 10 ^{-1.50}
	uestion No.2 (Question Id - 2)
	e solubility product (K_{sp}) of mercurous chloride (Hg_2Cl_2) is 1.2 x 10 ⁻¹⁸ . The concentration of
	g ₂] ²⁺ and [Cl ⁻] is found to be respectively :
(A	○ 6.7 x 10 ⁻⁷ M and 13.4 x 10 ⁻⁷ M (Correct Answer)
	0 ○ 13.4 x 10 ⁻⁷ M and 6.7 x 10 ⁻⁷ M
	0 6.7 x 10 ⁻⁹ M and 13.4 x 10 ⁻⁹ M
	0 13.4 x 10 ⁻⁹ M and 6.7 x 10 ⁻⁹ M
(E))○ 1.2 x 10 ⁻⁷ M and 2.4 x 10 ⁻⁷ M
Q	uestion No.3 (Question Id - 3)
	e following statement is correct concerning the IR spectrum of nitrite and isocyanate groups :
(A)	Calculus The - C ≡ N and - NCO groups absorb in the region of 2260 - 2240 cm ⁻¹ and 2275 -
	2240 cm ⁻¹ , respectively. (Correct Answer)
(B)	The - C ≡ N and - NCO groups absorb in the region of 2590 - 2550 cm ⁻¹ and 2275 - 2240 cm ⁻¹ , respectively.
(C	The - C ≡ N and - NCO groups absorb in the region of 1690 - 1590 cm ⁻¹ and 2260 - 2240 cm ⁻¹ , respectively.
(D) ○ The - C ≡ N and - NCO groups absorb in the region of 2275 - 2240 cm ⁻¹ and 2590 - 2550
	cm ⁻¹ ,respectively.
(E)	The - C ≡ N and - NCO groups absorb in the region of 1690 - 1590 cm ⁻¹ and 2260 - 2360
	cm ⁻¹ ,respectively.
Q	uestion No.4 (Question Id - 6)
In t	the mass spectrum of trifluoroacetic acid, CF_3CO_2H , intense peaks are observed at m/z = 69 and
	(base peak) in addition of other peaks. The peak at $m/z = 69$ is accompanied by a peak at $m/z = 80$ which is about 1.1% the intensity of the peak at $m/z = 80$. Which statement is inconsistent with
	se data?
(A)) ○ C - C bond cleavage occurs
(B)) O Fluorine is monotopic
(C	○ [CO ₂ H] ⁺ is a fragment
(D	○ CF ₃ CO ₂ H fragments by sequential loss of F atoms (Correct Answer)
(E)	○ [CF ₃] ⁺ is a fragment
_	wastien Na F (Overtise Id. 44)
	tuestion No.5 (Question Id - 11) th increase in temperature the viscosities of gases and liquids respectively.
	The state of the s

ıne	.Н	NIVIK	spectrum	or a	a compound	Α	snows a	a doublet	and	a septet.	vvnich of	tne	tollowing
state	eme	nts is	true?										

- (A) The spectroscopic data are consistent with 'A' containing a n-propyl group.
- (B) The spectroscopic data are consistent with 'A' being (CH₃)₂CHCl. (Correct Answer)
- (C) The spectroscopic data are consistent with 'A' containing CH₃CH₂ group.
- (D) \bigcirc The spectroscopic data are consistent with 'A' being (CH₃)₂CCl₂.
- (E) The spectroscopic data are consistent with 'A' containing (CH₃)₃C group.

Question No.8 (Question Id - 8)

What will be the decreasing order of absorption of wavelength of light in the visible region for the following complexes?

- A. $[Co(NH_3)_6]^{3+}$
- B. $[Co(H_2O)_6]^{3+}$
- C. $[Co(CN)_6]^{3-}$

Choose the **correct** answer from the options given below

- $(A) \bigcirc A > B > C$
- (B) \bigcirc C > A > B
- $(C) \bigcirc B > C > A$
- $(D) \bigcirc A > C > B$
- (E) \bigcirc B > A > C (Correct Answer)

Question No.9 (Question Id - 5)

A 0.2 M solution of an optically active compound. 'C' has an observed rotation in a 10 cm cell of (+) 0.6°. The specific rotation of the compound is 20° at room temperature and at 592 nm. The molecular weight of the compound 'C' is:

- (A) O 150 (Correct Answer)
- (B) O 200
- (C) 0 120
- (D) O 240
- (E) 0 160

Question No.10 (Question Id - 14)

The lead (Pb) content in the replicate determination of a blood sample was found to be 0.750, 0.754, 0.750 ppm. The standard deviation will be :

- (A) O.023
- (B) O.0023 (Correct Answer)
- (C) 0.00023
- (D) O 0.0032
- (E) 0.032

www.FirstRanker.com

www.FirstRanker.com

(D) (+0.0056
	(Correct Answer)

(E) 0.001

Question	No 12	(Question	ld - 9)	١
Question	110.12	Question	1u - 31	,

A mineral absorbs ultraviolet light and then emits a photon of wavelength 540 nm after converting some of absorbed light energy to heat. The energy of emission is :

- (A) 3.68 x 10⁻¹⁹ J (Correct Answer)
- (B) 1.84 x 10⁻¹⁹ J
- (C) O 7.36 x 10⁻¹⁹ J
- (D) O 5.40 x 10⁻¹⁹ J
- (E) O 2.70 x 10⁻¹⁹ J

Question No.13 (Question Id - 1)

In the extraction of a solution of 5.0 gms of butanoic acid in 100 ml of water at 15°C, 100 ml of benzene at 15°C is used. Partition coefficient (K) of butanoic acid between water and benzene is $\frac{1}{3}$ at 15°C. A single extraction with benzene, w (gms) remain in the aqueous layer. w in gms should be:

- (A) O 1.0 gm
- (B) O 2.0 gms
- (C) O 1.25 gms (Correct Answer)
- (D) O.5 gm
- (E) 3.0 gms

Question No.14 (Question Id - 7)

When a mixture of NaCl, Conc. H_2SO_4 , and $K_2Cr_2O_7$ is heated in a dry test tube, deep red vapour of A evolved. This vapour (A) dissolved in aqueous NaOH gave a yellow solution, which upon treatment with $AgNO_3$ formed a brick-red precipitate (B). A and B are, respectively:

- (A) CrO₂Cl₂ and Ag₂Cr₂O₇
- (B) CrO₂Cl₂ and Ag₂CrO₄ (Correct Answer)
- (C) \bigcirc Na₂ [CrOCl₅] and Ag₂Cr₂O₇
- (D) \bigcirc Na₂ [CrOCl₅] and Ag₂CrO₄
- (E) CrOCl and AgCrO₄

Question No.15 (Question Id - 15)

For the systematic error, which statement among the following is not correct?

- (A) O It is determinate error
- (B) O It is indeterminate error (Correct Answer)
- (C) It is reproducible
- (D) O It arises due to uncalibration
- (E) O It arises due to chemical contamination

SECTION 2 - PART B

Question No.1 (Question Id - 41)

The point group of H_2O_2 , if it is in trans form :

(A) ○ C₂₁₁

Firstranker's choice

H www.FirstRanker.com

www.FirstRanker.com

 $(A) \bigcirc H$ (CO_2Et)

The reaction goes via a radical intermediate.

The reaction goes through a carbene intermediate and an electrocyclic ring opening.

 $(C) \bigcirc (A] : CO_2Et$; $[B] : CO_2Et$

The reaction goes through a carbene intermediate.

 $[A]: \begin{picture}(0,0) \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0)$

The reaction goes through a radical mechanism.

 $[A]: \begin{picture}(0,0) \put(0,0){\line(1,0){100}} \put(0,0){\line(1,0)$

The reaction goes through a carbene intermediate and an electrocyclic ring opening.

(Correct Answer)

Question No.3 (Question Id - 16)

In the reduction of aromatic rings with metal, the substituents influence the regionelectivity of the reaction. The major product formed in the following reaction is :

OMe $\frac{\text{Na, NH}_3(l)}{\text{Et-O. EtOH}} \quad [A]$

 $[A]: \begin{array}{c} \text{OMe} \\ H \\ H \end{array} \text{(Correct Answer)}$

(B) O OMe

(C) O OMe

[A]: H H

Question No.4 (Question Id - 22)

OEt

A secondary alcohol is reacted with an aromatic acid in the presence of PPh₃ and DEAD. The following products are formed. Choose the correct products [A], [B] and [C].

$$R$$
 \rightarrow $Ph COOH $\xrightarrow{Ph_3P}$ $[A] + [B] + [C]$$

$$(A)\bigcirc\\ [A]: \underset{R}{ } \bigcirc\\ O \\ \nearrow\\ Ph \\ [B]: \underset{EtO_2C}{ } \bigcirc\\ N \\ \bigcirc\\ N \\ CO_2Et;$$

$$(B) \bigcirc \bigcap_{[A]: \begin{subarray}{c} (B) \\ \hline \end{subarray}} \bigcap_{[A]: \begin{subarray}{c} O \\ Ph \end{subarray}} \bigcap_{Ph} \bigcap_{[A]: \begin{subarray}{c} (B) \\ \hline \end{subarray}} \bigcap_{Ph} \bigcap_{[A]: \begin{subarray}{c} (C) \\ \hline \end{subarray}} \bigcap_{Ph} \bigcap_{Ph} \bigcap_{[A]: \begin{subarray}{c} (C) \\ \hline \end{subarray}} \bigcap_{Ph} \bigcap_{Ph}$$

IC1 : H₂O

$$[C]: Ph_3P = O$$

$$(\square)\bigcirc\\ [A]: \underset{R}{ } \bigcirc\\ O \\ Ph \\ [B]: \underset{EtO_2C}{ } \bigcirc\\ N \\ N \\ CO_2Et;$$

$$[C]: Ph_3P = O$$

$$(E)\bigcirc\\ [A]: \underset{R}{\overset{\text{\tiny{$[A]$}}}{ \bigcirc}} O \underset{Ph}{\overset{\text{\tiny{$[B]$}}}{ \bigcirc}} \underset{EtO_2C}{\overset{\text{\tiny{H}}}{ \bigcirc}} N \underset{H}{\overset{\text{\tiny{N}}}{ \bigcirc}} CO_2Et;$$

Question No.5 (Question Id - 25)

The following reaction steps are carried out to prepare a synthetic analogue of uracil. The products formed [A] and [B] are:

Me OOH
$$\xrightarrow{MsCl}$$
 [A] \xrightarrow{DBU} [B]

(C)

NuEirstrankeo'seshoice. 49)

www.FirstRanker.com

www.FirstRanker.com

For an hexagonal crystal system.

(A)
$$\bigcirc$$
 a = b = c; α = β = γ = 90°

(B)
$$\bigcirc$$
 a = b \neq c; α = β = 90° γ = 120° (Correct Answer)

(C)
$$\bigcirc$$
 a = b = c; α = β = 90° γ = 120°

(D)
$$\bigcirc$$
 a = b \neq c; α = β = γ = 90°

(E)
$$\bigcirc$$
 a \neq b \neq c; α = γ = 90° \neq β

Question No.7 (Question Id - 38)

Release of O₂ from oxyhemoglobin is favoured by :

- (A) O High pH, low conc. of CO₂ and high temperature
- (B) High pH, low conc. of CO₂ and low temperature
- (C) Low pH, low conc. of CO₂ and high temperature
- (D) O High pH, high conc. of CO₂ and low temperature
- (E) O Low pH, high conc. of CO₂ and high temperature (Correct Answer)

Question No.8 (Question Id - 40)

An excited atom has a mean life of 10^{-8} s and radiates a photon while coming down to the ground state. The inherent uncertainty in the frequency is $[h = 6.626 \times 10^{-34}]$; Js]

- (A) O 1.054 x 10⁺³⁴ Hz
- (B) 8 x 10⁻⁸ Hz
- (C) 8 x 10⁶ Hz (Correct Answer)
- (D) O 8 x 10⁻⁶ Hz
- (E) \bigcirc 1.054 x 10⁶ Hz

Question No.9 (Question Id - 43)

The first line in the rotational spectrum of carbonmonoxide appears at frequency 3.8424 cm⁻¹. The C - O bond length will be:

[N_A = 6.022 x 10²³/mol ; C = 3 x 10⁸ m/s)

- (A) 0 1.9 Å
- (B) 0 1.4 Å
- (C) O.90 Å
- (D) 1.13 Å (Correct Answer)
- (E) (1.23 Å

Question No.10 (Question Id - 33)

The CORRECT trend in ligand-to-metal charge transfer (LMCT) energies of the following metal tetraoxidoanions :

(A)
$$\bigcirc$$
 $VO_4^{3-} > CrO_4^{2-} > MnO_4^-$ and $ReO_4^- > TcO_4^- > MnO_4^-$ (Correct Answer)

(B)
$$\bigcirc$$
 $MnO_4^- > CrO_4^{2-} > VO_4^{3-}$ and $MnO_4^- > TcO_4^- > ReO_4^-$

(C) O
$$VO_4^{3-} > MnO_4^- > CrO_4^{2-}$$
 and $ReO_4^- > MnO_4^- > TrO_4^-$

(D) O
$$MnO_4^- > VO_4^{3-} > CrO_4^{2-}$$
 and $MnO_4^- > ReO_4^- > TrO_4^-$

(E) O
$$CrO_4^{2-} > MnO_4^- > VO_4^{3-}$$
 and $TcO_4^- > ReO_4^- > MnO_4^-$

Question No.11 (Question Id - 46)

For the reaction, Ag + Fe(ClO₄)₃ \rightleftharpoons AgClO₄ + Fe(ClO₄)₂, the equilibrium constant at 25°C is 0.60

The standard e.m.f. of a corresponding cell, Ag $|Ag^+|$ $|Fe^{++}|$ $|Fe^{+++}|$ $|Fe^{+++}|$ will be : |F=96500| C mol⁻¹;

www.FirstRanker.com www.FirstRanker.com

$$CIO_4^- \xrightarrow{+1.20 \text{ V}} CIO_3^- \xrightarrow{+1.18 \text{ V}}$$

$$HCIO_2 \xrightarrow{+1.65 \text{ V}} HCIO \xrightarrow{+1.67 \text{ V}}$$

$$Cl_2 \xrightarrow{+1.36 \text{ V}} Cl^-$$

Calculate the E⁰ for the couple HClO₂ to Cl₂ in acidic medium.

- (A) O +3.32 V
- (B) (+1.11 V
- (C) O +2.48 V
- (D) +1.66 V (Correct Answer)
- (E) O +4.97 V

Question No.13 (Question Id - 47)

In a second order reaction of the type A + B \rightarrow P, initially the concentrations of reactants were [A]₀ = 0.10 mol dm⁻³ and [B]₀ = 0.075 mol dm⁻³. After 1 hr the concentration of B fell to [B] = 0.04 mol dm⁻³. The rate constant k of the reaction will be :

- (A) \bigcirc 2.20 x 10⁻² dm³ mol⁻¹ s⁻¹
- (B) \bigcirc 1.20 x 10⁻³ dm³ mol⁻¹ s⁻¹
- (C) 2.20 x 10⁻³ dm³ mol⁻¹ s⁻¹ (Correct Answer)
- (D) \bigcirc 2.20 x 10⁻³ dm³ mol⁻¹
- (E) \bigcirc 1.20 x 10⁻² dm³ mol⁻¹ s⁻¹

Question No.14 (Question Id - 39)

An electron is confined to an one-dimension box of length 1Å. The ground state energy will be : $[h = 6.626 \times 10^{-34} \text{ Js}; m = 9.11 \times 10^{-31} \text{kg}]$

- (A) O 6.024 x 10¹⁸ J
- (B) 6.024 x 10⁻¹⁸ J (Correct Answer)
- (C) 6.024 x 10¹⁸ k.cal
- (D) O 6.024 x 10⁻¹⁸ k.cal
- (E) 43.904 x 10⁺¹⁷ k.cal

Question No.15 (Question Id - 34)

The ground terms for Cr²⁺. Cr³⁺ and Fe²⁺ are:

- (A) O ⁵D, ⁴F and ⁵D (Correct Answer)
- (B) \bigcirc ⁴F, ⁵D and ⁵D
- (C) \bigcirc ³F. ⁵D and ⁵D
- (D) O 3F, 6S and 5D
- (E) \bigcirc ³F, ⁴F and ⁵D

Question No.16 (Question Id - 19)

(S)–2–Phenylbutanal is reacted with Grignard reagent, methyl magnesium iodide.

The absolute configuration of the chiral carbons in the product of the above reaction is :

- (A) O 1 S, 3 S
- (B) O 1 R, 2 R
- (C) 0 1 S, 2 R

Firelectrocyclic fing opening; 4πe conretatory (Correct Answer)

www.FirstRanker.com

- (B) \bigcirc electrocyclic ring opening ; $2\pi e$; disrotatory.
- (C) \bigcirc .cycloaddition, $6\pi e$, disrotatory
- (D) o .sigmatropic, 2πe, (antara, antara)
- (E) \bigcirc .sigmatropic, $4\pi e$, (supra, supra)

Question No.18 (Question Id - 48)

The characteristic conditions of the Langmuir isotherm are:

- A. Adsorption cannot proceed beyond monolayer coverage
- B. All sites are equivalent and the surface is uniform
- C. Adsorption can proceed beyond monolayer coverage
- D. All sites are non-equivalent

The correct option would be:

- (A) O A and C
- (B) O A and B (Correct Answer)
- (C) Only A
- (D) Only B
- (E) O A, B and C

Question No.19 (Question Id - 21)

In the following reaction, predict the correct structures and identify the right statement:

$$\begin{array}{c}
OH \\
OH
\end{array}
\xrightarrow{TsCI, Py} [A] \xrightarrow{CaCO_3} [B]$$

$$(A)\bigcirc\\ \text{[A]}: \bigcirc\\ \text{OTs} \quad \text{[B]}: \bigcirc\\ \text{COO}\ominus$$

The carboxylate group is nucleophilically substituted.

This is an example of a semipinacol rearrangement.

$$(C)\bigcirc \bigcirc \\ [A]: \bigcirc OH \quad [B]: \bigcirc \bigcirc$$

Selective tosylation of secondary alcohol and epoxide formation.

$$[A]: \begin{picture}(60,0) \put(0,0){\oodd} \pu$$

Tosylation with epoxide formation.

$$[A]: \begin{picture}(0,0) \put(0,0){\oodd} \put$$

This is a Pinacol rearrangement.

- (B) \bigcirc LiF > LiCl > LiBr and Ag₂O > Ag₂S > AgCl
- (C) LiBr > LiCl > LiF and Ag₂O > AgCl > Ag₂S (Correct Answer)
- (D) \bigcirc LiF > LiCl > LiBr and Ag₂S > Ag₂O > AgCl
- (E) LiF > LiCl > LiBr and AgCl > Ag₂O > Ag₂S

Question No.22 (Question Id - 44)

The difference in chemical potential between two regions of a system is +9.1 kJ mol⁻¹. By how much does the Gibbs energy change when 0.10 mmol of a substance is transferred from one region to the other?

- (A) O 1.9 x 10⁻³ kJ
- (B) 91.0 x 10⁻³ kJ
- (C) O 19 x 10⁻³ kJ
- (D) O 9.1 x 10⁻³ kJ
- (E) 0.91 x 10⁻³ kJ (Correct Answer)

Question No.23 (Question Id - 17)

Predict the aromaticity, antiaromaticity or nonaromaticity in the following structures:

- (A) \bigcirc I : Antiaromatic ; II : Aromatic ; III : Aromatic
- (B) \bigcirc I : Aromatic ; II : Aromatic ; III : Aromatic
- (C) I : Nonaromatic ; II : Nonaromatic ; III : Nonaromatic
- (D) (I : Aromatic ; II : Nonaromatic ; III : Nonaromatic (Correct Answer)
- (E) O I: Antiaromatic; II: Antiaromatic; III: Antiaromatic

Question No.24 (Question Id - 45)

A sample consisting of 1.00 mol of perfect gas is expanded isothermally and reversibly at 20°C from 5 dm³ to 15 dm³. The q of the process is :

 $[R = 8.314 \text{ JK}^{-1} \text{ mol}^{-1}]$

- (A) O +0.982 kJ
- (B) -0.982 kJ
- (C) -26.8 kJ
- (D) O -2.68 kJ
- (E) +2.68 kJ (Correct Answer)

Question No.25 (Question Id - 23)

Question No.26 (Question Id - 31)

Out of the following reactions, which one will yield metal nitride?

' substitution

(A) O NH₄CI + NaNH₂

MeO

- (B) NH₃(aq) + NaOCl
- (C) \bigcirc Ca(s) + NH₃(I) (Correct Answer)
- (D) NaNH₂ + NaNO₃ at elevated temperatures
- (E) NaNH₂ + N₂O at elevated temperatures

Question No.27 (Question Id - 36)

Arrange the following in the decreasing order of Rh-C bond lengths.

- A. Rh (CO) (CI) $(PPh_3)_2$
- B. Rh (CO) (CI) (PEt₃)₂
- C. Rh (CO) (CI) $[P(C_6F_5)_3]_2$
- D. Rh (CO) (CI) (PMePh₂)₂

Choose the **correct** answer from the options given below

- $(A) \bigcirc B > D > A > C$
- (B) \bigcirc A > D > B > C
- $(C) \bigcirc D > A > B > C$
- $(D) \bigcirc C > B > A > D$
- (E) \bigcirc C > A > D > B (Correct Answer)

Question No.28 (Question Id - 42)

Asymmetric top molecule among the following:

- (A) CH₂CHCI (Correct Answer)
- (B) BCl₃
- (C) \bigcirc CH₃Cl
- (D) OCS
- (E) CCI₄

Question No.29 (Question Id - 20)

⊑ (Correct An**\ທຸ**ທຸທຸງ,FirstRanker.com

www.FirstRanker.com

HO

H

$$(D) \bigcirc$$

Question No.30 (Question Id - 28)

Considering the halides and oxides of elements from the periodic table, which statement is correct from the following:

- (A) O Metals form basic oxides and high oxidation state halides of transition metals tend to be ionic.
- (B) O Metals form basic oxides and low oxidation state halides of transition metals tend to be ionic. (Correct Answer)
- (C) O Non-metals form acidic oxides and p-block halides are predominantly ionic.
- (D) O Non-metals form basic oxides and p-block halides are predominantly covalent.
- (E) O Metals form acidic oxides and s-block oxides are predominantly ionic.

Question No.31 (Question Id - 18)

Elucidate the plausible molecular structure of a compound with molecular formula $C_7H_{12}O_4$, using following spectroscopic data :

IR (cm⁻¹): 2990 - 2880, 1735, 1150, 1035.

'H NMR: δ 1.28 (6 H, triplet)

δ 3.23 (4 H, quartet) δ 4.16 (2 H, singlet)

Mass spectrum :

m/z: 161, 160, 133, 115, 43, 29

The structures of A and B are respectively.

- $(\mathbb{C})\bigcirc\bigcirc$ and \bigcirc
- (D) O and O (Correct Answer)
- (E) O and O

Question No.33 (Question Id - 50)

The fraction condensed (ρ) of a polymer by stepwise process with degree of polymerization < N > = 251 would be :

- (A) O 9.96
- (B) O.996 (Correct Answer)
- (C) 0 1.96
- (D) O 2.0
- (E) 0.0996

Question No.34 (Question Id - 37)

The bond order of the metal-metal bonds in $[Re_2Cl_4(P(C_2H_5)_3)_4]$, $[Re_2Cl_4(P(C_2H_5)_2 Ph)_4]^{\oplus}$ and $[Re_2Cl_4(P(C_2H_5)Ph_2)_4]^{2+}$, respectively.

- (A) O 4.0, 3.5 and 3.0
- (B) 3.5, 3.0 and 4.0
- (C) \(\tag{4.0}, 3.0 \) and 3.5
- (D) 3.0, 3.5 and 4.0 (Correct Answer)
- (E) 3.0, 4.0 and 3.5

Question No.35 (Question Id - 35)

Among the following statements, which one characterizes the electronic absorption spectra of lanthanoid ions:

- (A) O Sharp absorptions due to the strong interaction of the f-orbitals with the ligand vibration.
- (B) O Spectra that are independent of the ligand type and coordination number. (Correct Answer)
- (C) Molar absorption coefficients are comparable with d-block elements.
- (D) O Numerous absorptions due to orbital mixing.
- (E) Numerous absorptions due to the capability to show higher coordination number.

www.FirstRanker.com