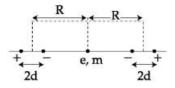
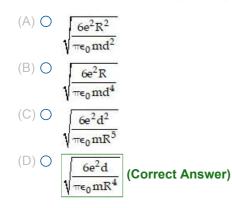


 $\Delta F = F_S - F_N = \alpha |\Psi|^2 + \frac{\beta}{2} |\Psi|^4$, where Ψ is an order parameter and α and β are constants such that $\alpha > 0$ in the normal and $\alpha < 0$ in the superconducting state, while $\beta > 0$ always. The minimum value of ΔF in the superconducting state is :

Question No.3 (Question Id - 29)


E First Ranker.com

www.FirstRanker.com


www.FirstRanker.com

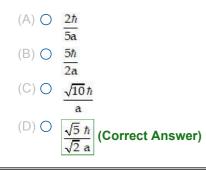
Question No.4 (Question Id - 18)

A particle of charge e and mass m is located at the midpoint of the line joining two mixed collinear dipoles with unit charges as shown below :

The particle is constrained to move only along the line joining the dipoles. Assuming that the length of the dipoles is much shorter than their separation, the natural frequency of oscillations of the particle is :

Question No.5 (Question Id - 34)

A narrow beam of x-rays with wavelength 1.5 Å is reflected from an ionic crystal with an fcc lattice structure with a density of 3.32 gcm^{-3} . The molecular weight is 108 amu. (1 amu \equiv 1.66 x 10⁻²⁴ g). The lattice constant is :


- (B) 🔿 4.56 Å
- (C) 🔿 4.00 Å
- (D) 🔿 2.56 Å

Question No.6 (Question Id - 27)

If the particle is represented by the normalised wave function :

$$\psi(x) = \begin{cases} \frac{\sqrt{15} \left(a^2 - x^2\right)}{4a^{5/2}} & \text{for } -a < x < a \\ 0 & \text{otherwise} \end{cases}$$

then the uncertainty Δp in its momentum is :

Question No.7 (Question Id - 22) Let *v*, p and E denote the speed, magnitude of the momentum and the energy of a free particle of rest mass m. Then, which of the following holds **true** ?

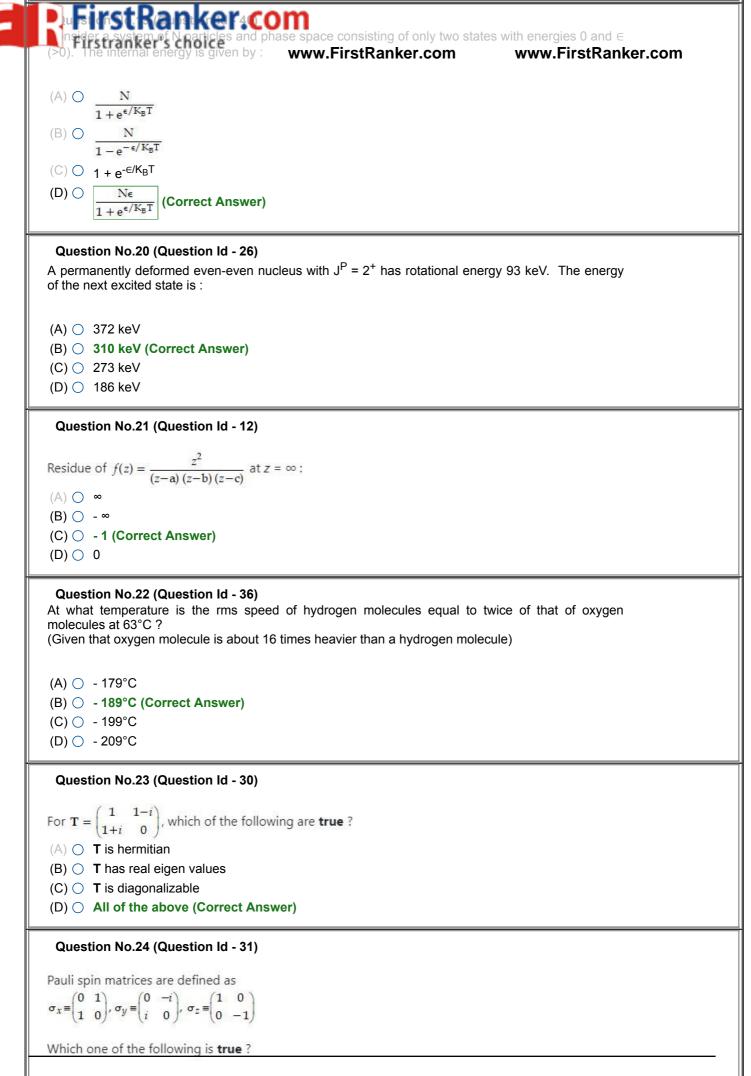
FirstRanker.com 1 1 www.FirstRanker.com www.FirstRanker.com (A) O 0, 1, 2 (B) O 0, 0, 3 (Correct Answer) (C) O 1, 1, 1 (D) 🔿 - 1, 1, 3 Question No.9 (Question Id - 16) The area of a disc in its rest frame S is equal to 1 (in some units). The disc will appear distorted to an observer O moving with a speed 'u' with respect to S along the plane of the disc. The area of disc measured in the rest frame of the observer O is : ($c \equiv$ speed of light in vacuum) (A) 🔿 $\left(1-\frac{u^2}{c^2}\right)^{\frac{1}{2}}$ (Correct Answer) (B) $\bigcirc \left(1-\frac{u^2}{c^2}\right)^{-\frac{1}{2}}$ $(C) \bigcirc \left(1 - \frac{u^2}{c^2}\right)$ $(D) \bigcirc \left(1 - \frac{u^2}{c^2}\right)^{-1}$ Question No.10 (Question Id - 14) The Fourier series for the function f (x) = x² for $-\pi \le x \le \pi$ is $x^2 = \frac{\pi^2}{3} - 4\left(\cos x - \frac{\cos 2x}{2^2} + \frac{\cos 3x}{3^2} - \dots\right)$. Which of the following is True ? (A) $\bigcirc \frac{\pi^2}{12} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots$ (B) $\bigcirc \frac{\pi^2}{12} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \dots$ (C) $\bigcirc \frac{\pi^2}{12} = 1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots$ (Correct Answer) $(D) \bigcirc$ None of the above

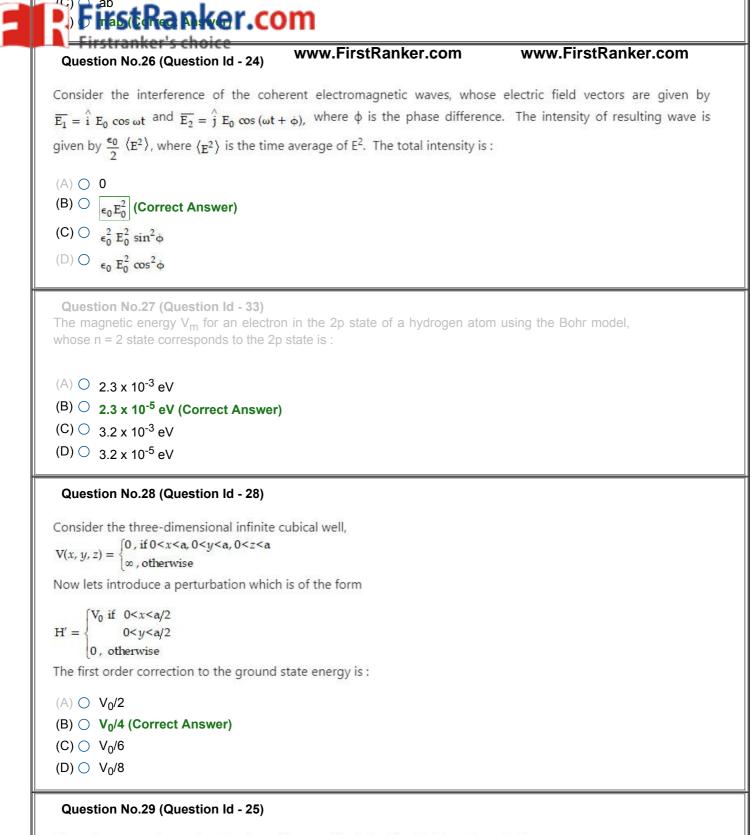
Question No.11 (Question Id - 35)

Consider that m gram of water at 0° C is mixed with an equal amount of water at 80° C. Consequently, the total change in entropy is given by :

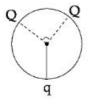
(A) \bigcirc 0.1367 m cal g⁻¹ K⁻¹

(B) O - 0.1203 m cal g⁻¹ K⁻¹ (Correct Answer)


(C) \bigcirc 0.0164 m cal g⁻¹ K⁻¹


(D) ○ - 0.2570 m cal g⁻¹ K⁻¹

Question No.12 (Question Id - 32)


In a single electron atom, corresponding to l = 1: A. $J = \frac{3}{2}$, $m_j = -\frac{3}{2}$, $-\frac{1}{2}$, $\frac{1}{2}$, $\frac{3}{2}$ B. $J = \frac{1}{2}$, $m_j = -\frac{1}{2}$, $\frac{1}{2}$ Which are **true**?

FirstRanker.com
(D) ○ 1 www.FirstRanker.com www.FirstRanker.com
Question No.14 (Question Id - 19) For the transformations :
A. Q = p, P = - q
B. Q = q tan p, P = <i>I</i> n sin p, whether :
Choose the correct answer from the options given below :
 (A) Only A is canonical (B) Only B is canonical (C) Both A and B are canonical (Correct Answer) (D) Neither A nor B are canonical
Question No.15 (Question Id - 37) Consider a one-dimensional Ising model with N spins, at very low temperatures when almost all the spins are aligned parallel to each other. There will be a few spin flips with each flip costing an energy 2 J. In a configuration with r spin flips, the energy of the system is $E = -NJ + 2rJ$ and the number of configuration is ${}^{N}C_{r}$; where r varies from 0 to N. The partition function is :
$(A) \bigcirc \left(\frac{J}{K_{B}T}\right)^{N}$ $(B) \bigcirc e^{-NJ/K_{B}T}$ $(C) \bigcirc \left(\sinh \frac{J}{K_{B}T}\right)^{N}$ $(D) \bigcirc \left(\cosh \frac{J}{K_{B}T}\right)^{N}$ (Correct Answer)
Question No.16 (Question Id - 39) Bose condensation occurs in liquid He ⁴ kept at ambient pressure at 2.17 K. At which temperature will Bose condensation occur in He ⁴ gaseous state, the density of which is 1000 times smaller than that of liquid He ⁴ ? (Assume that it is a perfect Bose gas)
 (A) 2.17 mK (B) 21.7 mK (Correct Answer) (C) 21.7 μK (D) 2.17 μK
Question No.17 (Question Id - 23) Four equal point charges are kept fixed at the four vertices of a square. How many neutral points (i.e., points where electric field vanishes) will be found inside the square ?
$\begin{array}{c c} (A) \bigcirc & 3 \\ (B) \bigcirc & 4 \\ (C) \bigcirc & \textbf{5} \ \textbf{(Correct Answer)} \\ (D) \bigcirc & 7 \end{array}$
Question No.18 (Question Id - 17)
www.FirstRanker.com

Three charges are located on the circumference of a circle of radius R, as shown below.

The two charges Q subtend an angle 90° at the centre of the circle. The charge q is symmetrically placed with respect to the charges Q. If the electric field at the centre of circle is zero, what is the magnitude of Q?

	StRanker.com
	$\frac{1}{2}m\left(\dot{r}^2+r^2\dot{\theta}^2+r^2\sin\dot{\varphi}^2-gar^2\right)$
$(D) \bigcirc$	$\frac{1}{2}m\left[\left(1+a^{2}r^{2}\right)\dot{r}^{2}+r^{2}\dot{\varphi}^{2}-gar^{2}\right]$ (Correct Answer)
	3 - Chemistry
	ion No.1 (Question Id - 63) mbol for the ground electronic state of O ₂ molecule is :
	$^{3}\Sigma_{g}^{-}$ (Correct Answer)
(B) 🔿	
(C) (
(D) ($^{1}\Sigma_{u}^{-}$
	ion No.2 (Question Id - 52)
	t gases having the same equation of state while described in terms of dimensionless reduced is is called :
(A) (Franck-Condon principle
	Law of corresponding state (Correct Answer)
	Heisenberg's uncertainty principle de-Broglie equation
	ion No.3 (Question Id - 53) efficient of compressibility (β) is :
(A) ($\frac{1}{2}\left(\frac{\partial V}{\partial x}\right)$
(B) O	$V(\partial T)_p$
	$\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_{T}$
(C) ($\frac{1}{V} \left(\frac{\partial P}{\partial V} \right)_{T}$
(D) (
	$-\frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_{T}$ (Correct Answer)
Quest	ion No.4 (Question Id - 42)
	xanone \xrightarrow{A} \xrightarrow{B} \xrightarrow{C} Cyclohexylamine. Identify reagents A, B and C.
	$A \equiv Ph - CH_2NH_2/H^+, B \equiv H_3O^+, C \equiv t-BuOK$
	$A \equiv H_3O^+, B \equiv Ph - CH_2NH_2/H^+, C \equiv t-BuOK$
	$A \equiv H_3O^+, B \equiv t-BuOK, C \equiv Ph - CH_2NH_2/H^+$
(D) ()	A ≡ PhCH ₂ NH ₂ /H ⁺ , B ≡ t-BuOK, C ≡ H ₃ O ⁺ (Correct Answer)
	ion No.5 (Question Id - 58) the value of square integrable quantum wave function at boundaries ?
(A) 🔿	i
(B) O	
(C) (D) (C)	- ∞ 0 (Correct Answer)
$(\cup) \cup$	

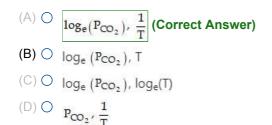
www.FirstRanker.com

Question No.8 (Question Id - 65)

Calculate the proportions of I_2 molecules in their first excited vibrational state at 25°C. The vibrational wave number is 214.6 cm⁻¹.

er.com

(A) O 0.229 (Correct Answer)


(B) O 1/0.229

(D) O 3

- (C) 🔿 0.0229
- (D) O 1/0.0229

Question No.9 (Question Id - 56)

For the chemical equilibrium $CaCO_3(s) = CaO(s) + CO_2(g)$ which pair of variables can determine ΔH , using a linear plot of data ?

Question No.10 (Question Id - 50) In Boltzmann statistics, what is the possible number of microstates, given that total energy = 3ϵ and total number of particles = 3 among energy levels 0, ϵ , 2ϵ ?

(A) 🔿 1

(B) O 2 (Correct Answer)

(C) 🔿 4

(D) O Infinite

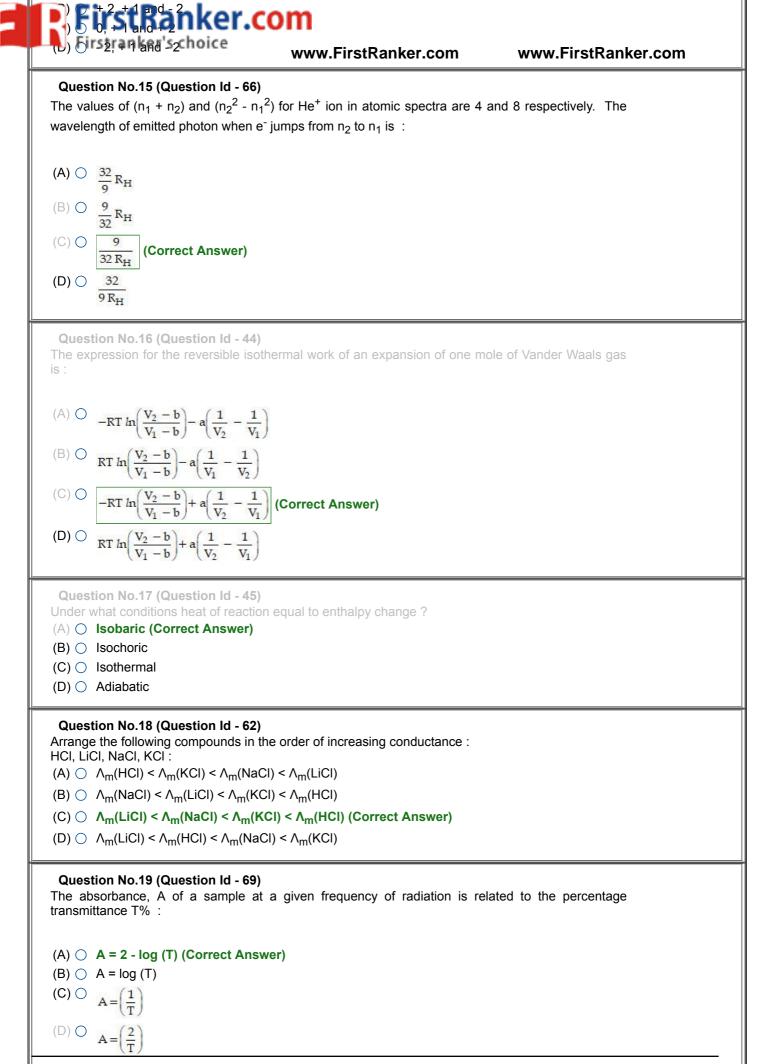
Question No.11 (Question Id - 67)

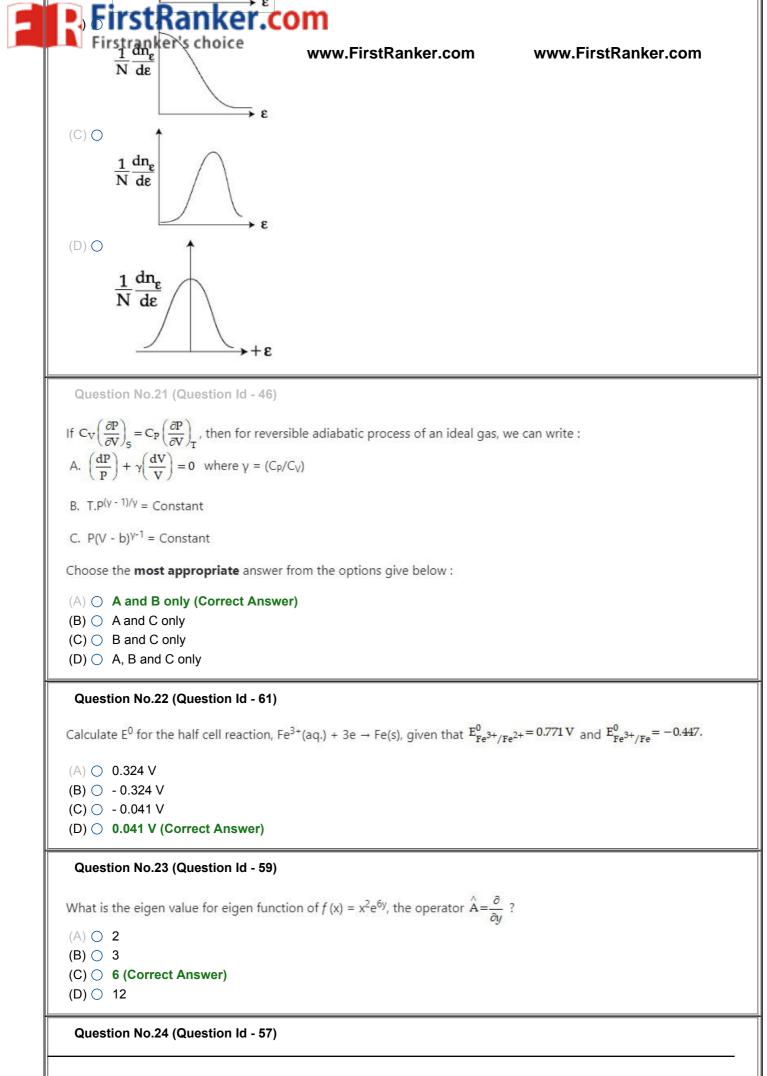
Under the harmonics approximation, what is the force constant (K) for HCl molecule, if it shows a strong infrared absorption at 2991 cm⁻¹? ($m_H = 1.0078250 \text{ amu}, \text{C} = 2.998 \times 10^8 \text{ ms}^{-1}, 1 \text{ amu} = 1.661 \times 10^{-27} \text{ kg},$ $m_{Cl} = 34.9688527 \text{ amu}$)

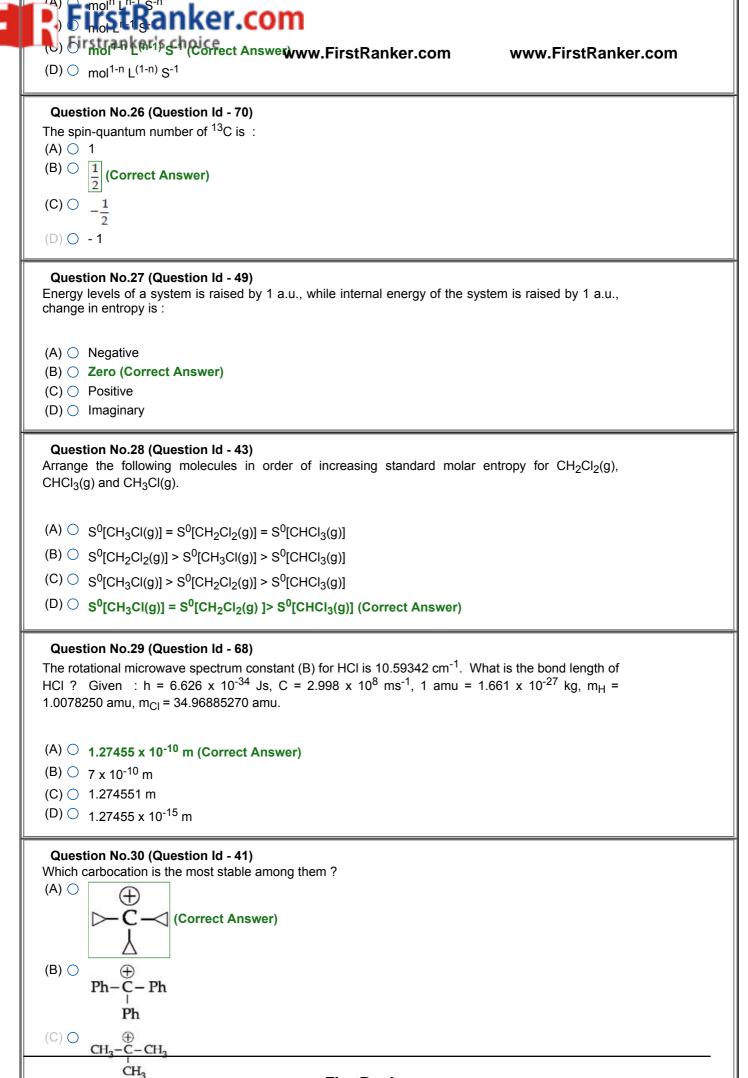
(A) O 516.3 Nm⁻¹ (Correct Answer)

- (B) 0.717 Nm⁻¹
- (C) O 575 Nm⁻¹
- (D) O 577 Nm⁻¹

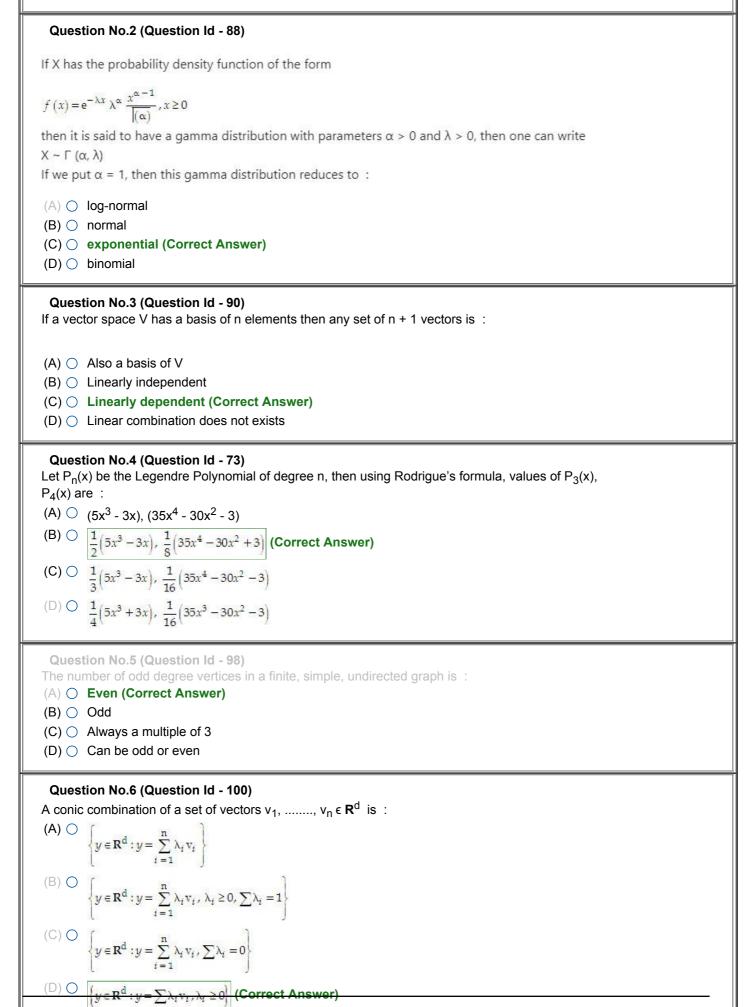
Question No.12 (Question Id - 54)

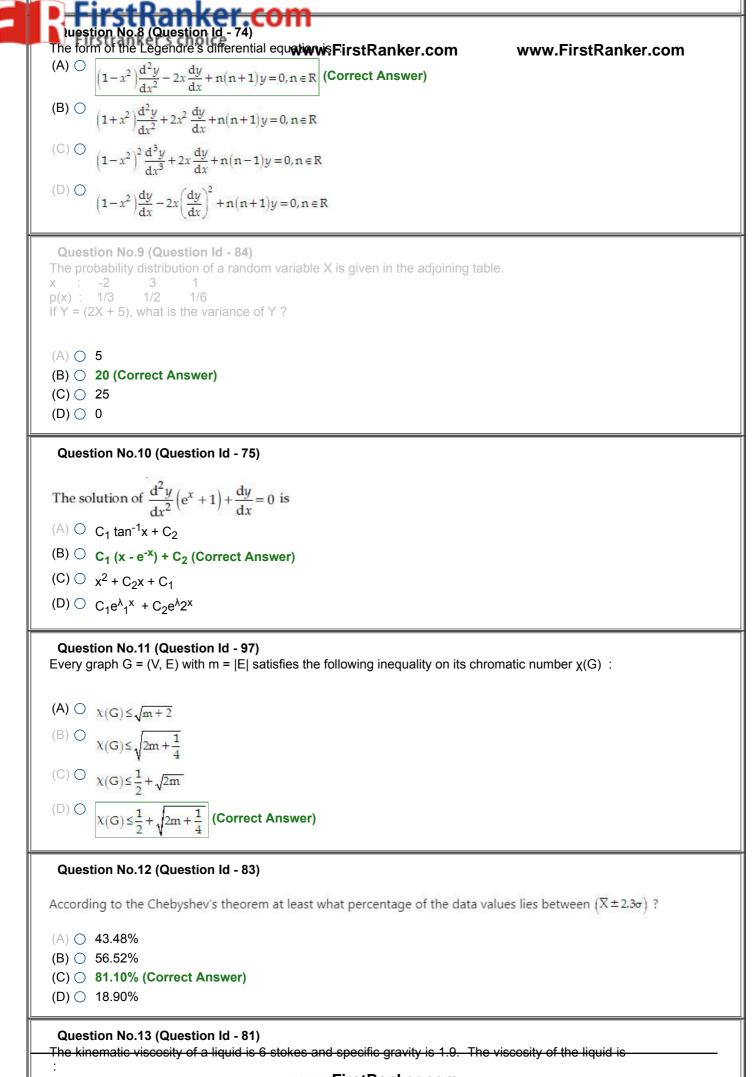

At 700 K, CO_2 and H_2 react to form CO and H_2O , where K_c is 0.64. If a mixture of 0.45 mole of CO_2 and 0.45 mole of H_2 is heated to 700 K, what is the amount of each gas at equilibrium ?

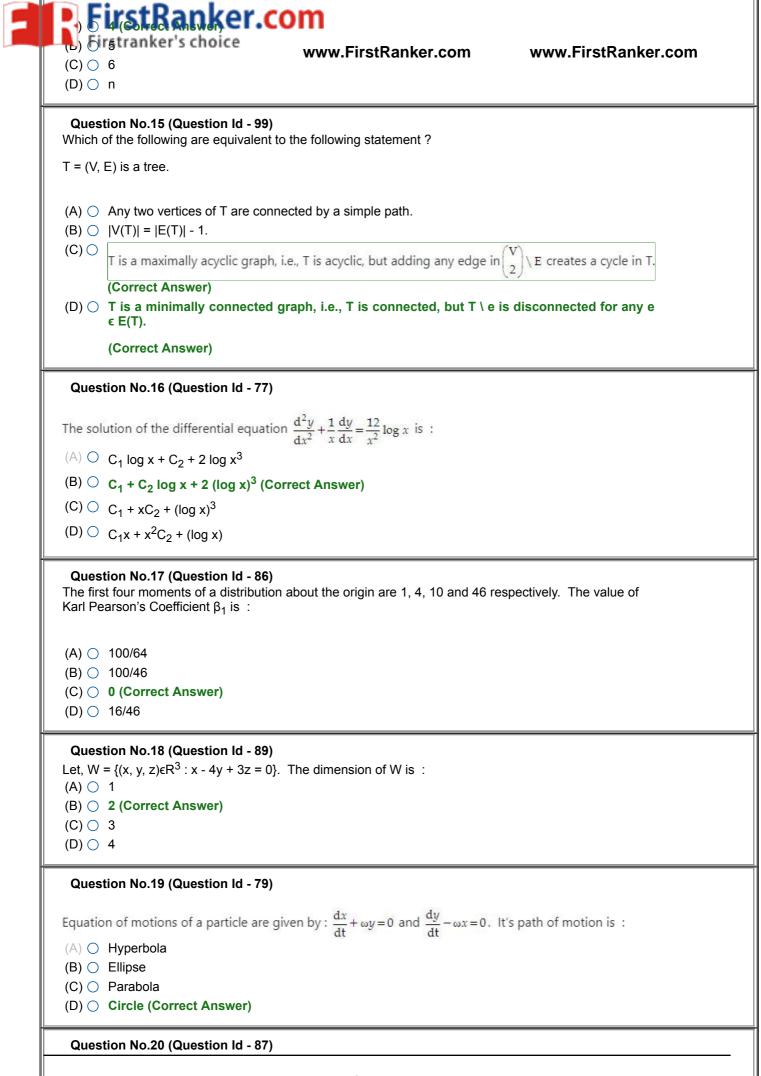

(A) 🔿 1 mole

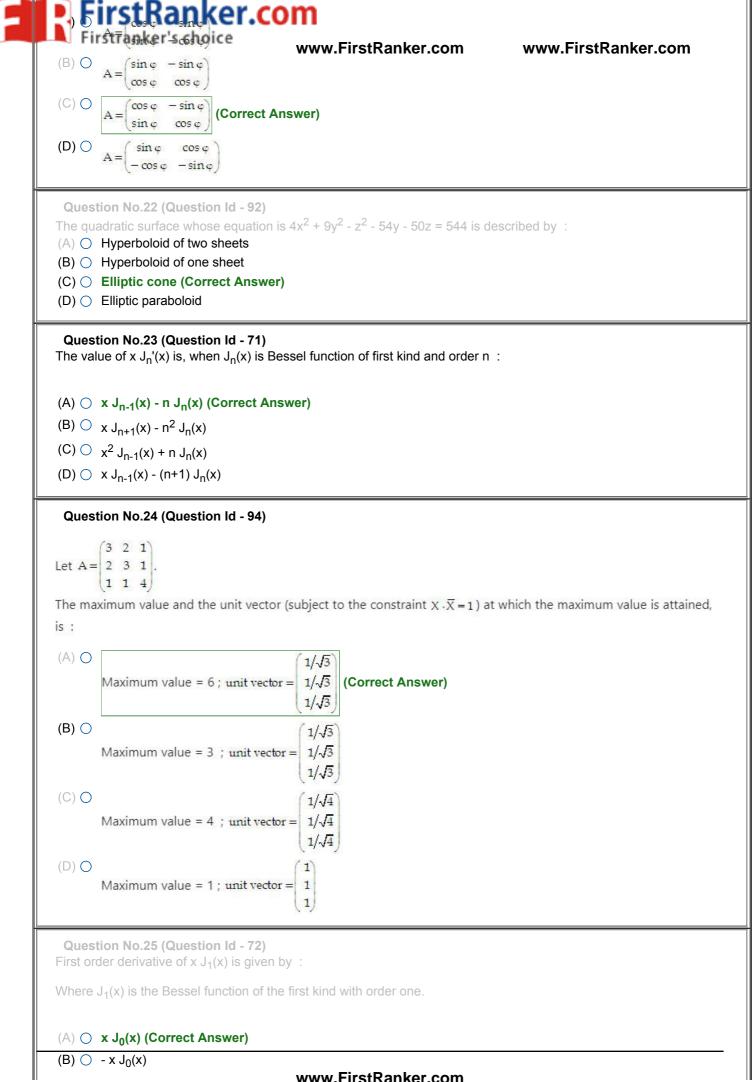

(B) O 0.025 mole

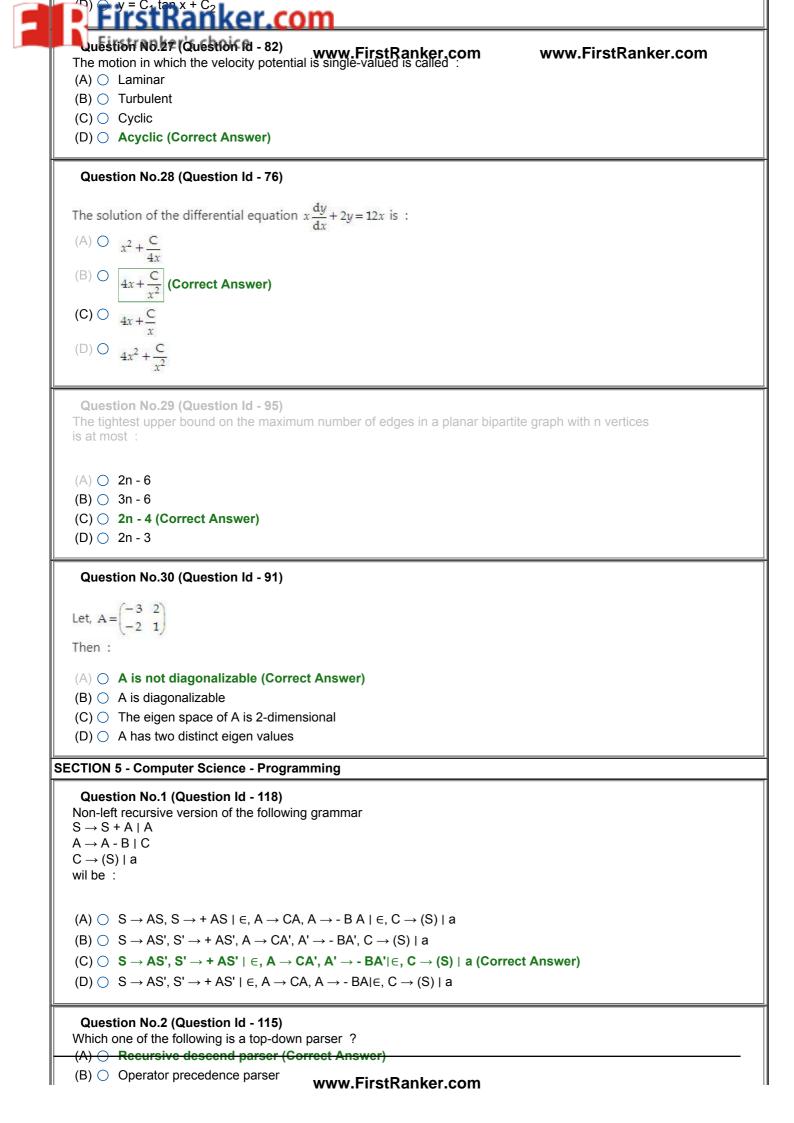
(C) O 0.25 mole (Correct Answer)

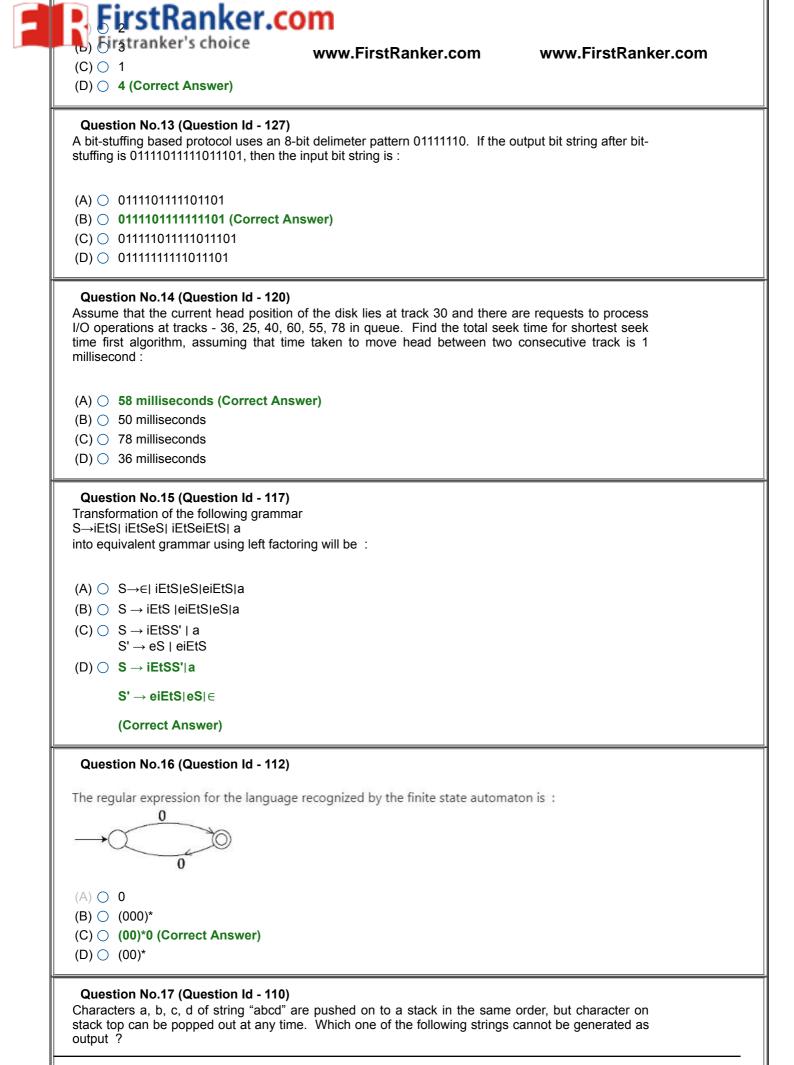

(D) 🔿 40 mole

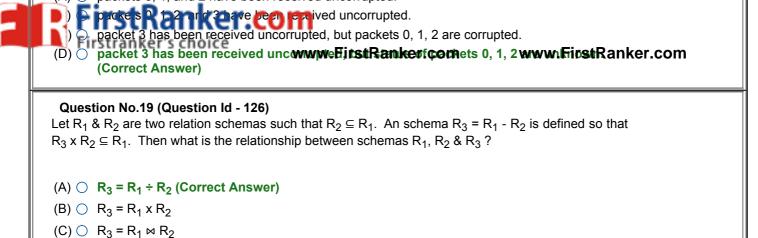






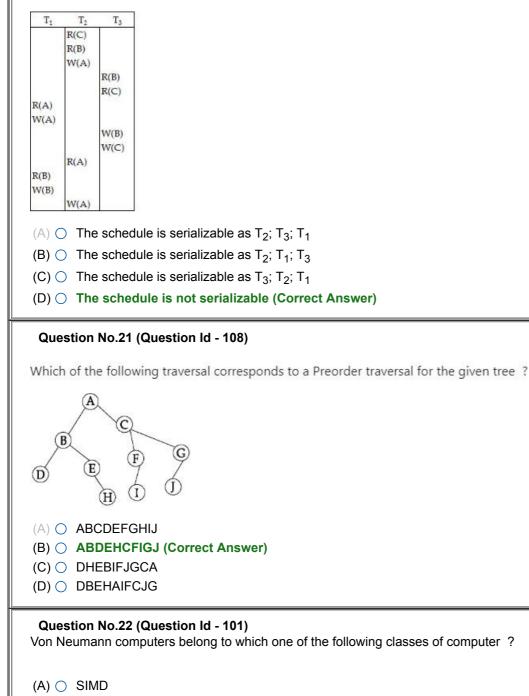






FirstRanker. 呼前领anker's choice	Signal (S); www.FirstRanker.com	www.FirstRanker.com
critical section	critical section	
Signal (S);	Signal (S);	
}	}	
while (true);	while (true);	
Assuming that initial value of sema their critical section simultaneously	aphore S is 1, find the maximum no. of _l :	possible processes that can be there i
 (A) ○ 2 (B) ○ 20 (Correct Answer) (C) ○ 10 (D) ○ 8 		
$S \rightarrow 1A0$ $A \rightarrow 1A0 \mid \in$	4) generated by the following grammar ? t of terminals is {0, 1}, set of non-termina	als is {S, A}, \in is the null
$\begin{array}{l} (A) \bigcirc \ \{1^n \ 0^n \mid n \ge 0\} \\ (B) \bigcirc \ \{1^n \ 0^n \mid n > 0\} \ (Correct \ Arr (C) \bigcirc \ \{1^m \ 0^n \mid m \ge 0, \ n \ge 0\} \\ (D) \bigcirc \ \{1^m \ 0^n \mid m > 0, \ n > 0\} \end{array}$	iswer)	
Question No.5 (Question Id - 10 Which problem can't be solved effic (A) O Matrix-Chain Multiplication (B) Longest Common Subsequ (C) Huffman Coding (Correct (D) Optimal Binary Search Tree	iently using dynamic programming ? Ience Answer)	
Question No.6 (Question Id - 11)Which of the CPU scheduling algor(A) Shortest Job First(B) Round Robin (Correct And(C) Priority Algorithm(D) First Come First Serve	ithm is suitable for multi-user system ?	
Question No.7 (Question Id - 11	6)	
	www.FirstRanker.com	

$\begin{array}{c} \textbf{FirstRanker.com} \\ \textbf{FirstRanker.com} \\ \textbf{(B)} \bigcirc A \rightarrow II, B \rightarrow I, C \rightarrow III, D \rightarrow IV \\ \textbf{(C)} \bigcirc A \rightarrow III, B \rightarrow IV, C \rightarrow I, D \rightarrow II (Correct Answer) \\ \textbf{(D)} \bigcirc A \rightarrow I, B \rightarrow IV, C \rightarrow II, D \rightarrow III \end{array}$
Question No.8 (Question Id - 113) Which string belong to the regular expression (1 + 01)* ? (A) 1010 (B) 1001 (C) 1011 (Correct Answer) (D) 0011
Question No.9 (Question Id - 128) Total number of keys required for a set of 25 persons to be able to communicate with each other securely using symmetric key cryptosystem and public key cryptosystem, respectively are :
 (A) ○ 600, 50 (B) ○ 600, 25 (C) ○ 300, 50 (Correct Answer) (D) ○ 300, 25
Question No.10 (Question Id - 104) How many comparisons will be done in insertion sort for the following input ? 2 4 6 8 9 7 5 3 1
 (A) ○ 24 (B) ○ 28 (C) ○ 30 (D) ○ 27 (Correct Answer)
Question No.11 (Question Id - 130) Person X is sending secure message to person Y. X encrypts message M, using Y's public key and also attaches his digital signature to the encrypted message. We have four security goals to achieve
I. Confidentiality
II. Authentication
III. Integrity
IV. Non-repudiation
Which security goals are achieved using given form of communication ?
 (A) ○ Only I and II (B) ○ Only I, II and III (Correct Answer) (C) ○ Only II and III (D) ○ Only I, III and IV
Question No.12 (Question Id - 106)
www.FirstRanker.com



Question No.20 (Question Id - 124)

(D) \bigcirc R3 = R₁ - R₂

Consider three data items A, B, and C and the following execution schedule of transactions T_1 , T_2 and T_3 . In the diagram, R(D) and W(D) denote Reading & Writing the item respectively.

(B) O MIMD

	→ FiBt→an Eer→ D&AiceB. Which of the following is a key of R? www.FirstRanker.com www.FirstRanker.com
(/	A) O CD
	B) O EC (Correct Answer)
	C) ○ AE D) ○ AC
(1	
W	Question No.25 (Question Id - 109) /hich of the following stack configuration is not possible to solve the arithmetic expression - ((4 x 5) - + 7)) ?
(/	$\begin{array}{c} 4 \end{pmatrix} \bigcirc \begin{array}{c} 6 \\ \hline 20 \end{array}$
(B) O 7 6 20
((
	13 20
([13 5 4 (Correct Answer)
	Question No.26 (Question Id - 111)
	 hich statement is true about Turing Machine ? A) ○ It has read head only.
	3) O It has write head only.
	 It has read/write head. (Correct Answer) It requires extra tape (storage) other than input tape.
(1	
A m	Question No.27 (Question Id - 121) ssume that main memory access time is 1 millisecond and associative memory access time is 1 icrosecond, then find an estimated probability of associative memory hit if the effective main emory access time is not more than 100 microseconds :
(/	A) 🔿 0.01
•	3) 🔿 0.001
	C) ○ 0.1 (Correct Answer) D) ○ 0.0001
(1	
	Question No.28 (Question Id - 103)
	me complexity of matrix multiplication is : A) $\bigcirc \Box_{\Theta(n^3)}$ (Correct Answer)
	$B) \bigcirc \Theta(n^2)$

	FirstRanker.com
((C) C Execution of the current instruction www.pirtstRankerincompt service pwgrwn. FirestRanker.com
([D) O Execution of current instruction is aborted and the interrupt service program starts.
	Question No.30 (Question Id - 107)
w	/hat is the worst case time required to search a given element in a sorted linked list of ngth n ?
()	A) 🔿 O(1)
	$3) \bigcirc O(\log_2 n)$
	C) ○ O(n) (Correct Answer) D) ○ O(n log ₂ n)
SEC [.]	TION 6 - Life Science - Biotechnology
	Question No.1 (Question Id - 147) iven below are two statements :
S.	tatement I :
l In	two-dimensional gel electrophoresis, first dimension is SDS - PAGE.
s	tatement II :
In	two-dimensional gel electrophoresis, the second dimension is Iso-electric Focusing (IF).
In	the light of the above statements, choose the correct answer from the options given below :
(E (C	 A) O Both Statement I and Statement II are true Both Statement I and Statement II are false (Correct Answer) C) O Statement I is correct but Statement II is false C) O Statement I is incorrect but Statement II is true
w	Question No.2 (Question Id - 138) /hich of the following is a consequence of incomplete removal of topological links during DNA eplication ?
II .	A) 🔿 Ligation
	 B) ○ Catenation (Correct Answer) C) ○ Fragmentation
II .	D) Crossing Over
	Question No.3 (Question Id - 152)
	iven below are two statements :
	tatement I :
1	NA polymerase I synthesizes mRNA in the nucleoplasm.
S	tatement II :
∥ ⊢	NA polymerase II synthesizes rRNA in the nucleolus.
1	the light of the above statements, shoose the connect ensurer from the entires sives below t
1	the light of the above statements, choose the correct answer from the options given below :
In (/	 a the light of the above statements, choose the correct answer from the options given below : A) O Both Statement I and Statement II are true Both Statement I and Statement II are false (Correct Answer)

	irstranker's choice www.FirstRanker.com www.FirstRanker.com
	Peroxisomes and Lysosomes
• •	 Pyrenoids and Lysosomes Lysosomes and Mitochondria
	Peroxisomes and Pyrenoids (Correct Answer)
(=) (
	stion No.6 (Question Id - 150) osition of particular genes on the cytological map can be determined directly by the following que :
(A) C	TILLING
. ,	Chromosomal staining
• •	 In situ hybridization (Correct Answer) Nuclease treatment
	stion No.7 (Question Id - 142) below are two statements :
State	ment I :
Guide	RNA is complementary to the sequence of DNA to be edited.
State	nent II :
Protos	spacer Adjacent Motif (PAM) is essential for recognition of target sequence.
In the	light of the above statements, choose the correct answer from the options given below :
(B) C	Both Statement I and Statement II are true (Correct Answer) Both Statement I and Statement II are false
(B) C (C) C	
(B) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	Both Statement I and Statement II are false Statement I is correct but Statement II is false
(B) (C) (C) (D) (C) (D) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	 Both Statement I and Statement II are false Statement I is correct but Statement II is false Statement I is incorrect but Statement II is true
(B) C (C) C (D) C Que DNA f	 Both Statement I and Statement II are false Statement I is correct but Statement II is false Statement I is incorrect but Statement II is true stion No.8 (Question Id - 157) ragmentation for genome sequencing can be done by :
(B) ⊂ (C) ⊂ (D) ⊂ DNA f A. So B. Ch	 Both Statement I and Statement II are false Statement I is correct but Statement II is false Statement I is incorrect but Statement II is true stion No.8 (Question Id - 157) ragmentation for genome sequencing can be done by :
(B) ⊂ (C) ⊂ (D) ⊂ DNA f A. So B. Ch C. U\	 Both Statement I and Statement II are false Statement I is correct but Statement II is false Statement I is incorrect but Statement II is true stion No.8 (Question Id - 157) ragmentation for genome sequencing can be done by : nication emical treatment
(B) C (C) C (D) C DNA f A. So B. Ch C. U\ D. EN	 Both Statement I and Statement II are false Statement I is correct but Statement II is false Statement I is incorrect but Statement II is true stion No.8 (Question Id - 157) ragmentation for genome sequencing can be done by : nication emical treatment / - treatment
(B) C (C) C (D) C DNA f A. So B. Ch C. UV D. EN E. Ter	 Both Statement I and Statement II are false Statement I is correct but Statement II is false Statement I is incorrect but Statement II is true stion No.8 (Question Id - 157) ragmentation for genome sequencing can be done by : nication emical treatment / - treatment MS - treatment
(B) C (C) C (D) C DNA f A. So B. Ch C. U\ D. EN E. Tel Choos	 Both Statement I and Statement II are false Statement I is correct but Statement II is false Statement I is incorrect but Statement II is true stion No.8 (Question Id - 157) ragmentation for genome sequencing can be done by : nication nemical treatment / - treatment MS - treatment mperature treatment
(B) C (C) C (D) C (D) C (D) C (D) C (D) C (C, UV (C, UV (C, UV (C, UV (C, UV (C, UV (C, UV (C, UV) (C, UV (C, UV) (C,	 Both Statement I and Statement II are false Statement I is correct but Statement II is false Statement I is incorrect but Statement II is true stion No.8 (Question Id - 157) ragmentation for genome sequencing can be done by : nication nication emical treatment / - treatment MS - treatment mperature treatment se the correct answer from the options given below : A and B only (Correct Answer) C only
(B) C (C) C (D) C (D) C (D) C (D) C (D) C (C) C (C) C	 Both Statement I and Statement II are false Statement I is correct but Statement II is false Statement I is incorrect but Statement II is true stion No.8 (Question Id - 157) ragmentation for genome sequencing can be done by : nication nication emical treatment / - treatment MS - treatment mperature treatment se the correct answer from the options given below : A and B only (Correct Answer) C only C and D only
(B) C (C) C (D) C (D) C (D) C (D) C (D) C (C) C (C) C	 Both Statement I and Statement II are false Statement I is correct but Statement II is false Statement I is incorrect but Statement II is true stion No.8 (Question Id - 157) ragmentation for genome sequencing can be done by : nication nication emical treatment / - treatment MS - treatment mperature treatment se the correct answer from the options given below : A and B only (Correct Answer) C only
(B) C (C) C (D) C (D) C (D) C (D) C (D) C (C) C (C) C (D) C Que	 Both Statement I and Statement II are false Statement I is correct but Statement II is false Statement I is incorrect but Statement II is fue stion No.8 (Question Id - 157) ragmentation for genome sequencing can be done by : nication nemical treatment / - treatment // - treatme
(B) C (C) C (D) C (D) C (D) C (D) C (D) C (C) C	 Both Statement I and Statement II are false Statement I is correct but Statement II is false Statement I is incorrect but Statement II is false Statement I is incorrect but Statement II is true stion No.8 (Question Id - 157) ragmentation for genome sequencing can be done by : nication nemical treatment / - treatment MS - treatment mperature treatment se the correct answer from the options given below : A and B only (Correct Answer) C only C and D only C and E only stion No.9 (Question Id - 149) s attached to nuclear matrix at a site called :
(B) C (C) C (D) C (D) C (D) C (D) C (D) C (C) C (C) C (C) C (D) C (D) C (D) C (D) C (D) C (D) C	 Both Statement I and Statement II are false Statement I is correct but Statement II is false Statement I is incorrect but Statement II is true stion No.8 (Question Id - 157) ragmentation for genome sequencing can be done by : nication nemical treatment / - treatment // - treatm
(B) C (C) C (D) C (D) C (D) C (D) C (D) C (C) C (C) C (C) C (C) C (C) C (D) C (C) C (D) C (C) C (D) C (C) C	 Both Statement I and Statement II are false Statement I is correct but Statement II is false Statement I is incorrect but Statement II is false Statement I is incorrect but Statement II is true stion No.8 (Question Id - 157) ragmentation for genome sequencing can be done by : nication nemical treatment / - treatment MS - treatment mperature treatment se the correct answer from the options given below : A and B only (Correct Answer) C only C and D only C and E only stion No.9 (Question Id - 149) s attached to nuclear matrix at a site called :

 Firstranker's choice (A) O Horizontal gene transfer (B) O Endosymbiosis (C) O Gene duplication (Corro (D) O None of the above 		www.FirstRanker.com
Question No.12 (Question Id Which of the following statements	•	
A. Nucleases hydrolize an ester	bond within a phosphodiester bond.	
B. Phosphatases hydrolize an es	ster bond in a phosphomonoester bond.	
C. Restriction endonucleases ca	an cleave DNA without sequence specificity.	
D. Name of restriction endonuc discovered.	leases are typically derived from the bacter	ium from which they are
Choose the correct answer from	the options given below :	
(A) 🔿 A, B and C only		
(B) \bigcirc A, B and D only (Correction (C)) \bigcirc B, C,	ct Answer)	
(C) \bigcirc B, C and D only (D) \bigcirc A, C and D only		
$(A) \bigcirc$ Attachment of mRNA to r	f protein synthesis GTP is required ? ribosomes - nascent protein complex from A to P bit to endoplasmic reticulum	(Correct Answer)
Question No.14 (Question Id Which of the following methods could act as a production platform	provide a rapid route to optimize plant me	etabolic engineering and
(A) \bigcirc Transient expression in A	Arabidopsis	
(B) O Transient expression in		
 (C) ○ Transient expression in F (D) ○ Transient expression in C 		
Question No.15 (Question Id -		
T4 polynucleotide kinase is used (A) O Labeling 5' end of DNA		
(B) ○ Labeling 3' end of DNA		
(C) \bigcirc Ligation of two DNA frage	ments	
(D) \bigcirc Restriction digestion of d		
Question No.16 (Question Id - For which of the following crops, ?	- 140) barnase/barstar based hybrid production sy	stem is available in India
(A) 🔿 Rice		
(B) O Mustard (Correct Answ	ver)	
(C) O Maize		

	e ectrophore Ranker.com
	autoradiography's choice www.FirstRanker.com www.FirstRanker.com
	D. cleavage
	E. hybridization
	Which would be the correct sequence of the steps ?
	(A) 🔿 C, B, A, D, E
	(B) O D, B, A, E, C (Correct Answer)
	(C) 🔿 A, B, C, D, E
	(D) 〇 E, A, D, C, B
	Question No.19 (Question Id - 156) Which of the following are sequence databases ?
	A. NCBI, GenBank and FASTA
	B. FTP, FASTA, and NCBI
	C. EMBL, DDBJ, and GenBank
	D. EMBL, GenBank, and NCBI
	E. FTP, GenBank, and NCBI
	Choose the correct answer from the options given below :
	(A) 🔿 A and D only
	$(B) \bigcirc B \text{ only}$
	(C) O C only (Correct Answer)
	(D) O A, D and E only
	Question No.20 (Question Id - 141)
	GATEWAY cloning system is based on :
	(A) O Restriction digestion
	(B) O Ligation reaction
	(C) O Recombination reaction (Correct Answer)
	(D) O Phosphorylation reaction
	Question No.21 (Question Id - 160)
	The most abundant secondary structure in a properly folded Myoglobin and haemoglobin is :
	(A) \bigcirc Parallel β -sheets
	(B) \bigcirc Antiparallel β -sheets
	(C) \bigcirc Left handed α -helix
	(D) 〇 Right handed α-helix (Correct Answer)
	Question No.22 (Question Id - 134)
	Non-sense mediated RNA decay in Eukaryotes :
	(A) O detects and degrades RNA transcript containing non-sense mutation
	(B) ○ regulates the expression of many genes carrying no non-sense mutation
	 (C) ○ both 1 and 2 (Correct Answer) (D) ○ none of the above
-	
	Question No.23 (Question Id - 151)
	Klenow fragment of E. coli DNA polymerase I possesses which of the following activities ? (A) ○ 5' - 3' exonuclease activity
	(A) \bigcirc 5 - 3 exonuclease activity (B) \bigcirc Reverse transcriptase and nick - translation activity
	(C) ○ Polymerase activity and 3'-5'-exonuclease activity (Correct Answer)
	www.FirstRanker.com

(C) (C)	None of the above Both 1 and 2 (Correct Answer)		www.FirstRanker.com
Helical (A) () (B) () (C) ()	tion No.26 (Question Id - 153) structure of DNA is determined by X-Ray diffraction measurement Neutron diffraction measurement Electron diffraction measurement Diffraction of Visible light	t (Correct Answer)	
	tion No.27 (Question Id - 159) below are two statements :		
Statem	nent I :		
	ukaryotic ribosome contains thr nal proteins (r-proteins).	ree species of ribosomal RNA (r	RNA) and ~50 different
Statem	nent II :		
	rokaryotic ribosome is an assem nal factors.	nbly of four rRNA, ~80 r-proteins a	and more than 150 non-
In the li	ight of the above statements, choo	ose the correct answer from the opt	ions given below :
(B) ○ (C) ○	Both Statement I and Statement Both Statement I and Statement Statement I is correct but Statement I is incorrect but Statement I is	nt II are false (Correct Answer) ment II is false	
Cleava (A) (C) (B) (C) (C)	tion No.28 (Question Id - 148) age site of Type I restriction endom Same as recognition site 24 - 26 bp downstream of recogr Non-specific but at least 1000 Random		e (Correct Answer)
	tion No.29 (Question Id - 137) of the following are the most abun	ndant DNA-based molecular markers	s in genome ?
(B) ○ (C) ○	Amplified Fragment Length Poly Random Amplified Polymorphic Single Nucleotide Polymorphis Simple Sequence Repeats (SSR	DNA (RAPD) sms (SNPs) (Correct Answer)	
	tion No.30 (Question Id - 133) below are two statements : one is	labelled as Assertion A and the oth	ner is labelled as Reason
Assert	tion A :		
	d Mello got the Noble prize for the	e discovery of RNA interference.	
Reaso			
	interference is a novel gene mology.	e silencing technique with trem	endous applications in
In the li	ight of the above statements, choo		rom the entions given

(B) (B)	namic programming (Correc	www.FirstRanker.com	www.FirstRanker.com
Four strand (A) ○ 3'- (B) ○ Tra (C) ○ Mi	No.2 (Question Id - 189) ded nucleic acid is found in : regions of chromosomal DN anslation initiation site of riboso cro RNA precursors ron-Exon boundaries		
Major and (A) O Dru (B) Sit (C) Sit	No.3 (Question Id - 179) Minor groves are : ug binding locations of proteins es of lipid bilayer where water es of specific interaction wit mmunication channel of trans-	can be trapped th DNA double helix (Correct Ans	wer)
In the Eu	No.4 (Question Id - 182) karyotic Gene finder progran is employed :	m called "Gen Scan" one of the	following computational
(B) ○ Hi (C) ○ Inf	rkov Chain d den Markov Model (Correct ormation theoretic me theoretic	t Answer)	
One of the (A) ○ ne (B) ○ B - (C) ○ UF	arest neighbour tree (Correct Answer)	in phylogenetic tree construction :	
Minisequer (A) O De (B) Pr (C) Ex		ific and exactly defined mutations second-last to the 3'base of the prir	
Which of th (A) O Mo (B) Th as (C) C Ba	e number of substitutions sumed to vary according to prrect Answer) sal node represents a common	mes uniform rate of mutation in the t in each branch of a phyloger Boltzmann distribution. n ancestor of all the other sequence oths in a tree is the tree length.	netic tree is generally
Questior	No.8 (Question Id - 175) bly of sequence of total lengt	th 'G', from 'N' reads of equal leng	oth 'L', the coverage a =
(A) ⊖ > 1	(Correct Answer)	www.FirstRanker.com	

luest Large	on No.10 (Question Id - 188) cale gene expression are carried out, with this recovery technologies and values stRahker.com ed in n x m matrix form where n is the number of genes and m represents the conditions or
express time. If	ed in n x m matrix form where n is the number of genes and m represents the conditions of we find gene transcripts with similar expression patterns this means :
	under expression
	co-expression (Correct Answer) over-expression
	no expression
	ion No.11 (Question Id - 184)
	nome wide binding of protein or transcription factor is studied experimentally through CHIP- he Reads are aligned to the reference genome and one of the software tool is used to derive n motif :
· · · · ·	NGS-TOF
	BOWTIE
(C) (D) (D) (D) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	MEME (Correct Answer) Fast Q
	ion No.12 (Question Id - 174) In use the following formula for calculation of melting temperature (T _m) of DNA double helix :
(A) 〇	$T_{\rm m} = \frac{\Delta H}{\Delta S}$ (Correct Answer)
(B) 〇	$T_{\rm m} = \frac{\Delta G}{\Delta H - RT/n[c]}$
	$\Delta GT_{\rm m} = \frac{\Delta S}{\Delta H} + \ln[c]$
(D) O	$T_{\rm m} = \frac{\exp\left(-\Delta G/kT\right)}{\sum \exp\left(-\Delta G/kT\right)}$
	ion No.13 (Question Id - 181)
	nized sequences with same composition are constructed to : construct SNP variants
(B) 🔿	determine promoter sequence
	ascertain homology of two protein sequences having medium similarity (Correct Answer)
	determine histone binding sequences
	ion No.14 (Question Id - 173) rage multiplication factor per cycle in PCR is approximately :
(A) (A)	
(B) 🔿	
	1.6 (Correct Answer)
(D) (D)	1
The first	ion No.15 (Question Id - 186) completed genome sequencing project was of :
(A) 🔿	
	Haemophilus influenza
	PhiX174 (Correct Answer) Drosophila melanogaster
	ion No.16 (Question Id - 162)
	f the following structural motif occurs in RNA predicted structure only ?
∥ (A) ⊖	Pleated sheet www.FirstRanker.com

which of			·/		anker.com	
	ombinatio		f			
(A) 🔿 🖌	A and B					
(B) ○ E						
(C) (C)						
		(Correct	Answer)			
If we con series B computir	nsider two = (0, 1,	o gene ex - 1, 10, - earson Co	10). It m	profiles for the time se ay be noted that the	expression patter	, 3, - 3) and another time n looks similar. If we are A and B using the above
(A) 🔿 (0.66					
• •		rect Ans	wer)			
(C) (C)			- /			
(D) O						
Which of (A) ○ ((B) ○ A (C) ○ F	f the follo Cys, His a Asp, Glu His, Pro a	wing sets and Val and Gln and Phe		acids tend to remain o	conserved in a giv	en family ?
ט 🔾 (ח) (Cys, Gly	and Pro	(Correct A	Answer)		
Questi	on No.20) (Questie	on ld - 18	3)	irst a sequence of	states visited denoted by
Question If we con q ₁ , q ₂ , q visualize determin	on No.20 nsider a tr l ₃ d as a nes the st) (Question Apical Hid And section	on Id - 18 Iden Mark cond a se process.	3) ov Model framework fi quence of emitted sy	mbols o ₁ , o ₂ [•]	states visited denoted by Their generation can be in the HMM framework
Question q_1, q_2, q_1 visualize determin $(A) \bigcirc F$	on No.20 nsider a ty la d as a les the st =orward a) (Questio ypical Hid and sec two step ate path ?	on Id - 18 Iden Mark cond a sec process. ?	3) ov Model framework fi quence of emitted sy	mbols o ₁ , o ₂ [•]	Their generation can be
Questie If we con q_1, q_2, q visualize determin (A) \bigcirc F (B) \bigcirc E	on No.20 nsider a tr a as a r d as a r les the st =orward a Backward) (Questio ypical Hid and sec two step ate path a algorithm d algorithm	on Id - 18 Iden Mark cond a sec process. ?	3) ov Model framework fi quence of emitted sy What is the name	mbols o ₁ , o ₂ [•]	Their generation can be
QuestionIf we conduct q_1, q_2, q_1 visualizedetermin(A) \bigcirc F(B) \bigcirc E(C) \bigcirc N	on No.20 nsider a tr d as a f les the st Forward a Backward Viterbi a) (Questio ypical Hid and sec two step ate path a algorithm d algorithm	on Id - 18 Iden Mark process. ? m (Correct /	3) ov Model framework fi quence of emitted sy What is the name	mbols o ₁ , o ₂ [•]	Their generation can be
QuestionIf we conduct q_1, q_2, q_1 visualizeddetermin(A) \bigcirc F(B) \bigcirc E(C) \bigcirc N(D) \bigcirc EQuestionOne of the(A) \bigcirc r(B) \bigcirc s(C) \bigcirc t	on No.20 Insider a ty d as a file ies the st Forward a Backward Viterbi al Baum-We on No.21 Ine followi non-nega symmetry triangle p) (Question ypical Hid , and sec two step ate path a algorithm d algorithm gorithm elsch algo l (Question ng is not tivity roperty	on Id - 18 Iden Mark process. ? m (Correct A prithm on Id - 16	 3) ov Model framework fiquence of emitted sy What is the name Answer) 8) axioms of distance : 	mbols o ₁ , o ₂ [•]	Their generation can be
Questian If we condition q_1, q_2, q_1 visualized determine (A) F (B) E (C) V (D) E Questian C (B) s (C) V (D) t (D) t (D) t (D) t (D) t (D) t	on No.20 Insider a ty d as a fill ies the st Forward a Backward Viterbi all Baum-We on No.21 Ine followin non-nega symmetry triangle p degenera	O (Questic ypical Hid , and sec two step ate path a algorithm d algorithm d algorithm gorithm elsch algo I (Questic ng is not tivity roperty acy (Corr	on Id - 18 Iden Marko process. ? m (Correct A prithm on Id - 16 the usual	3) ov Model framework fi quence of emitted sy What is the name Answer) B) axioms of distance : er)	mbols o ₁ , o ₂ [•]	Their generation can be
QuestionIf we condition q_1, q_2, q_1 visualizeddetermine(A) \bigcirc F(B) \bigcirc E(C) \bigcirc N(D) \bigcirc EQuestion(A) \bigcirc r(B) \bigcirc s(C) \bigcirc t(D) \bigcirc cQuestionQuestion(D) \bigcirc cQuestion(D) \bigcirc cQuestion(D) \bigcirc cQuestion(D) \bigcirc cQuestion(D) \bigcirc c(D) $) c(D)) c($	on No.20 nsider a ty d as a f ees the st Forward a Backward Viterbi al Baum-We on No.21 non-nega symmetry triangle p degeneration	O (Questic ypical Hid and sec two step ate path a algorithm d algorithm d algorithm elsch algo O (Questic ng is not tivity roperty acy (Corr	on Id - 18 Iden Mark process. ? m (Correct / orithm on Id - 16 the usual rect Answ	3) ov Model framework fi quence of emitted sy What is the name Answer) 8) axioms of distance : er)	mbols o ₁ , o ₂ [•]	Their generation can be
QuestionIf we condition q_1, q_2, q_1 visualizeddetermine(A) \bigcirc F(B) \bigcirc E(C) \bigcirc N(D) \bigcirc EQuestion(A) \bigcirc r(B) \bigcirc s(C) \bigcirc t(D) \bigcirc cQuestionQuestion(D) \bigcirc cQuestion(D) \bigcirc cQuestion(D) \bigcirc cQuestion(D) \bigcirc cQuestion(D) \bigcirc c(D) $) c(D)) c($	on No.20 nsider a ty d as a f ees the st Forward a Backward Viterbi al Baum-We on No.21 me followi non-nega symmetry triangle p degeneration on No.22 g the foll	O (Questic ypical Hid and sec two step ate path a algorithm d algorithm d algorithm elsch algo O (Questic ng is not tivity roperty acy (Corr	on Id - 18 Iden Mark process. ? m (Correct / orithm on Id - 16 the usual rect Answ	3) ov Model framework fi quence of emitted sy What is the name Answer) B) axioms of distance : er)	mbols o ₁ , o ₂ [•]	Their generation can be
QuestionIf we condition q_1, q_2, q_1 visualizeddetermine(A) \bigcirc F(B) \bigcirc E(C) \bigcirc V(D) \bigcirc EQuestion(A) \bigcirc T(B) \bigcirc S(C) \bigcirc T(D) \bigcirc CQuestionQuestionAssumine	on No.20 nsider a ty d as a f ees the st Forward a Backward Viterbi al Baum-We on No.21 me followi non-nega symmetry triangle p degeneration on No.22 g the foll	O (Questic ypical Hid and sec two step ate path a algorithm d algorithm gorithm d algorithm gorithm d algorithm gorithm d algorithm gorithm d algorithm gorithm d algorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm 	on Id - 18 Iden Marko process. ? m (Correct / orithm on Id - 16 the usual rect Answ on Id - 17 ylogenetic	 3) ov Model framework fiquence of emitted sy What is the name Answer) 8) axioms of distance : er) 0) clistance table. 	mbols o ₁ , o ₂ [•]	Their generation can be
Questing If we conglight q_1, q_2, q_1 visualized determine (A) \bigcirc F (B) \bigcirc E (C) \bigcirc N (D) \bigcirc E Questing One of the (A) \bigcirc r (B) \bigcirc s (C) \bigcirc t (D) \bigcirc c Questing Assuming Species	on No.20 nsider a ty d as a f ees the st Forward a Backward Viterbi al Baum-We on No.21 me followi non-nega symmetry triangle p degeneration on No.22 g the foll	O (Questic ypical Hid and sec two step ate path a algorithm d algorithm gorithm d algorithm gorithm d algorithm gorithm d algorithm gorithm d algorithm gorithm d algorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm 	on Id - 183 Iden Marko process. ? m (Correct A prithm on Id - 166 the usual rect Answ on Id - 170 ylogenetic C	 3) ov Model framework fiquence of emitted sy What is the name Answer) B) axioms of distance : er) 0) c distance table. D 	mbols o ₁ , o ₂ [•]	Their generation can be
Questia If we con q_1, q_2, q visualize determin (A) \bigcirc F (B) \bigcirc E (C) \bigcirc V (D) \bigcirc E Questia One of th (A) \bigcirc r (B) \bigcirc s (C) \bigcirc t (D) \bigcirc c Questia Assuming Species A	on No.20 nsider a ty d as a f ees the st Forward a Backward Viterbi al Baum-We on No.21 me followi non-nega symmetry triangle p degeneration on No.22 g the foll	O (Questic ypical Hid and sec two step ate path a algorithm d algorithm gorithm d algorithm gorithm d algorithm gorithm d algorithm gorithm d algorithm gorithm d algorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm 	on Id - 18 Iden Marko process. ? m (Correct / orithm on Id - 16 the usual rect Answ on Id - 170 ylogenetic C 7	 3) ov Model framework fiquence of emitted sy What is the name Answer) 8) axioms of distance : er) 0) : distance table. D / 8 	mbols o ₁ , o ₂ [•]	Their generation can be
Questia If we con q_1, q_2, q visualize determin (A) \bigcirc F (B) \bigcirc E (C) \bigcirc N (D) \bigcirc E Questia One of th (A) \bigcirc r (B) \bigcirc s (C) \bigcirc t (D) \bigcirc c Questia Assuming Species A B	on No.20 nsider a ty d as a f ees the st Forward a Backward Viterbi al Baum-We on No.21 me followi non-nega symmetry triangle p degeneration on No.22 g the foll	O (Questic ypical Hid and sec two step ate path a algorithm d algorithm gorithm d algorithm gorithm d algorithm gorithm d algorithm gorithm d algorithm gorithm d algorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm gorithm 	on Id - 18 Iden Marko process. ? m (Correct / orithm on Id - 16 the usual rect Answ on Id - 170 ylogenetic C 7	 3) ov Model framework fiquence of emitted sy What is the name Answer) 8) axioms of distance : er) 0) the distance table. D 8 7 	mbols o ₁ , o ₂ [•]	Their generation can be

	Nuestion No.24 (Question Id - 172) Wolarity of urea used in sequencing is : www.FirstRanker.com www.FirstRanker.com
	(A) ○ 1 M (B) ○ 3 M
	$(C) \bigcirc 5 M$
	(D) O 7 M (Correct Answer)
	Question No.25 (Question Id - 164)
	In the progressive multiple alignment method, for the given set of sequences, the first step is to order the sequences :
	(A) \bigcirc by length
	(B) O by distances (Correct Answer)
	$(C) \bigcirc$ by compositions
	(D) ○ by k-mer
	Question No.26 (Question Id - 177) Ainfensin's experiment deals with :
	A. Spontaneous folding
	B. Denaturing of protein
	C. Entropic trap
	D. Misfolding
1	Which of the following is true?
	(A) O A and B (Correct Answer)
	(B) O B and C
	(C) O C and D
	(D) 〇 None
,	Question No.27 (Question Id - 178)
	Vander Waals potential acts between : (A) O Any types of pairs of atoms, including those of inert gas (Correct Answer)
	(B) \bigcirc C = O and H - N atoms of two peptides
	(C) ○ Only between side chain atoms of proteins
	(D) O Between negatively charged phosphate groups of DNA or RNA
	Question No.28 (Question Id - 163) The entries in the substitution matrices such as PAM, BLOSUM are nothing but :
	$(A) \bigcirc$ odds ratio
	(B) O log odds ratio (Correct Answer)
	(C) O amino acid count
	(D) O amino acid weights
	Question No.29 (Question Id - 176) Peptide bond between amino acids can be classified as :
	(A) \bigcirc a type of hydrogen bond
	(B) \bigcirc a covalent bond about which φ , Ψ torsional rotations are possible
	(C) O a bond important for side chain rotameric states
	(D) 〇 a covalent bond with partial double bond character (Correct Answer)
	Question No.30 (Question Id - 167)
	There are several ways of building a tree with "n" species. In phylogenetic tree if one is interested in only for possible rooted tree then the number is given by :

 (C) 1/(1 - Redundancy) (D) 1/(1 + Redundancy) 	www.FirstRanker.com	www.FirstRanker.com
Question No.2 (Question Id - 208) As the bandwidth approaches infinite, and η is the spectral power density) :	the channel capacity becomes (S is t	he average signal power
(A) ○ Infinite(B) ○ Zero		
(C) \bigcirc 1.44 $\frac{S}{\eta}$ (Correct Answer)		
(D) 〇 1		
Question No.3 (Question Id - 198) Which of the following statement is no	t correct 2	
(A) \bigcirc MESFETs and JFETs are always		
(B) O MODFETs are surface channe		
(C) \bigcirc MOSFETs and MISFETs are n	nostly surface channel devices drain are common formed by therm	al oxidation process
(Correct Answer)	diamate common formed by them	
Question No.4 (Question Id - 192) A network contains linear resistors an then the voltage across each resistor i		l the resistor are doubled
then the voltage across each resistor i	S .	
(A) 🔿 Halved		
(B) O Doubled		
 (C) ○ Increased by four times (D) ○ Remain unchanged (Correct) 	Answer)	
Question No.5 (Question Id - 215)		
The radiation resistance of half-wave of	dipole is :	
(A) (A) 14.6 ohm		
 (B) ○ 73 ohm (Correct Answer) (C) ○ 36.5 ohm 		
(D) ○ 100 ohm		
Question No.6 (Question Id - 195)		
The LED (Light Emitting Diode) operat		
 (A) ○ Forward bias condition (Cor (B) ○ Reverse bias condition 	rect Answer)	
(C) \bigcirc Independent of bias		
(D) \bigcirc Both forward and reverse bias	i	
Question No.7 (Question Id - 200)		
The voltage gain of an amplifier is 10 reduced to :	0 on applying negative feedback with	β = 0.03, its gain will be
(A) 〇 70		
(B) ○ 99.97		
(C) \bigcirc 25 (Correct Answer)		
(D) 🔿 3		

(B) 2	www.FirstRanker.com	www.FirstRanker.com
$\frac{2}{1+\omega^2\tau^2}$		
(C) $\bigcirc \frac{\tau}{1+\omega^2\tau^2}$		
$(D) \bigcirc \frac{\tau}{1-\omega^2\tau^2}$		
1 - 60 +		
Question No.10 (Question Id - 1	93)	
Identify the signal $e^{-5t}u(t)$ is :		
(A) ○ Periodic signal(B) ○ Power signal		
(C) C Energy signal (Correct A)	nswer)	
(D) \bigcirc Neither an energy nor power		
Question No.11 (Question Id - 2		
The output Q(t + 1) of a JK flip-flop	is 1. It changes to 0, when a clock pulse	is applied. The input J
and K are respectively : (A) \bigcirc X and 0		
(B) \bigcirc 0 and 1		
(C) \bigcirc X and 1 (Correct Answer)		
(D) \bigcirc 1 and X		
Question No.12 (Question Id - 2	•	range of 1 to 11 using
2's complements arithmetic is :	ires to represent negative number in the	range of - 1 to - 11 using
(A) 🔿 2		
(B) ○ 3		
(C)		
(D) O 5 (Correct Answer)		
Question No.13 (Question Id - 2	20)	
	used by IEEE 802.11 standard for wirele	ss LAN ?
	`	
 (B) ○ CSMA/CA (Correct Answer (C) ○ ALOHA 	er)	
$(D) \bigcirc CSMA/CD$		
Question No.14 (Question Id - 1	•	
The voltage divider method of biasi $(A) \bigcirc$ Limit the input ac signal go	•	
	almost independent of β (Correct Ans	wer)
(C) \bigcirc Reduced the dc base curre		
(D) \bigcirc Reduced the cost of the circ		
Question No. 15 (Question 12)		
Question No.15 (Question Id - 2 While defining polarization of a way	•	
• •	and magnetic field components	
(A) U i ne orientation of electric a		
 (A) O The orientation of electric a (B) O The orientation of electric 		
(B) \bigcirc The orientation of electric (C) \bigcirc The orientation of magnetic		

D) Pir2:1 MUX (D) O 64 : 1 MUX	www.FirstRanker.com	www.FirstRanker.com
Question No.18 (Question Id - 2' The current amplitude of a uniform and a progressive shift α = - $\pi/2$ is :	4-element end-fire array having an ele	ment with spacing of $\lambda/4$
(A) ○ 1:3:3:1		
(B) \bigcirc 1:4:4:1		
(C) ○ 1 : 2 : 2 : 1 (Correct Answe (D) ○ 1 : 5 : 5 : 1	er)	
Question No.19 (Question Id - 20		
	bandwidth of 100 Hz, 100 Hz, 200 Hz a d transmitted sample rate (in Hz) is :	and 400 Hz, respectively.
(A) 🔿 800		
(B) 🔿 1600		
(C) (C) 400		
(D) 〇 3200 (Correct Answer)		
Question No.20 (Question Id - 2' Ethernet frame consists of :	19)	
(A) O MAC address (Correct An	swer)	
(B) \bigcirc IP address		
(C) O Default mask		
(D) O Network address		
Question No.21 (Question Id - 20 A Quaternary source generates info 0.4. The entropy (bits/message) of t (A) 1.8564 (B) 1.8569 (C) 1.8464 (Correct Answer) (D) 2	prmation with probabilities $P_1 = 0.1$, $P_2 = 0.1$	0.2, P ₃ = 0.3 and P ₄ =
Question No.22 (Question Id - 2 ' Quarter wave-length line is a/an :	11)	
$(A) \bigcirc$ Impedance to resistance co	nversion line	
(B) O Impedance transformer (C	•	
(C) \bigcirc Line to separate source and	l load	
(D) O Stub matching line		
	17) ght radiates 35 kW at 90 MHz uniformly trength of the signal at received antenna	
(A) O 48.70 km (Correct Answer	r)	
(B) ○ 57.68 km		
 (C) ○ 75.60 km (D) ○ 50.75 km 		

) Piron future input Pirotranker's choice	www.FirstRanker.com	www.FirstRanker.com
Question No.26 (Question Id - 1	197)	
· · ·	Field Effect Transmitter) is also known as	:
(A) 🔿 MOSFET		
(B) 🔿 JBT		
(C) O HEMT (Correct Answer)		
(D) 🔿 IMPATT		
Question No.27 (Question Id - 1		
In n-type semiconductor the Fermi	energy level lies near to the :	
$(A) \bigcirc$ Valance band level		
(B) O Conduction band level (C	-	
(C) \bigcirc Centre of energy band gap		
(D) O Neither conduction nor val	ance band	
Question No.28 (Question Id - 2		
The dual of a Boolean expression i		
(A) \bigcirc Interchanging all 0's and 1		
	, all ' + ' & '.' sign (Correct Answer)	
.,	all '+' & '.' sign and complementing all the v	variables
(D) O Interchanging all '+' & '.' sig	gn and complementing all the variables	
Question No.29 (Question Id - 2		
is used in satellite cor (A) ○ High noise amplifier	mmunication.	
(B) \bigcirc Push-pull amplifier		
(C) \bigcirc Parametric amplifier		
(D) \bigcirc Low noise amplifier (Cor	rect Answer)	
Question No.30 (Question Id - 2	-	
Which of the following statement is $(A) \bigcirc Geo_{-}$ synchronous satellite	remains practically stationary relative to e	arth antenna
	means the samething as Geo-stationary	
	en the cost of a communication satellite	
earth stations. (Correct A		

Save & Print

-