rstRanker.com

irstranker's choicepact subset www.FirstRanker.com

www.FirstRanker.com

(A)
$$\bigcirc$$
 $\left\{-\frac{1}{n}: n \in \mathbb{N}\right\} \cup \{0\} \cup (0, \pi]$ (Correct Answer)

(B)
$$\bigcirc \left\{-\frac{1}{n}: n \in \mathbb{N}\right\} \cup (0, 1].$$

(C)
$$\bigcirc$$
 $\{1, 2, 3\} \cup [4, 5] \cup \{6 + \frac{1}{n} : n \in \mathbb{N}\}.$

$$(\mathsf{D}) \bigcirc \left\{1 - \frac{1}{n} : \mathsf{n} \in \mathbb{N}\right\} \cup (1, 2].$$

Question No.2 (Question Id - 10)

Let G be an abelian group of order 16. Which of the following is true?

- (A) \bigcirc There exists $g \in G$ such that order of g is 8.
- (B) \bigcirc If there exists a subgroup H of G of order 8, then there exists $g \in G$ with order 8.
- (C) \bigcirc If there exists $g \in G$ with order 8, then G is cyclic.
- (D) \bigcirc There is a one-to-one group homomorphism $\varphi: G \to S_m$ for some $m \ge 1$. (Correct Answer)

Question No.3 (Question Id - 8)

Consider the system of linear equations:

$$3x + y - z = \alpha$$

$$-x + 2y + 5z = \beta$$

$$4x + z = 7$$

For which α and β does this system have a unique solution ?

- (A) \bigcirc For no α , $\beta \in \mathbb{R}$ there is a unique solution.
- (B) \bigcirc α is unique but β can be arbitrary.
- (C) \bigcirc α and β are both unique.
- (D) \bigcirc For all α , $\beta \in \mathbb{R}$ there is a unique solution. (Correct Answer)

Question No.4 (Question Id - 6)

What are the maximum and minimum of the function $f(x) = e^x - x$ on the interval $\left[-1, \frac{1}{2}\right]$?

(A)
$$\bigcirc$$
 1 + $\frac{1}{e}$ and \sqrt{e} - $\frac{1}{2}$

(B)
$$\bigcirc$$
 $\boxed{1 + \frac{1}{e} \text{ and 1.}}$ (Correct Answer)
(C) \bigcirc $\sqrt{e} - \frac{1}{2}$ and 1.

(C)
$$\bigcirc$$
 $\sqrt{e} - \frac{1}{2}$ and 1.

(D)
$$\sqrt{e} - \frac{1}{2}$$
 and $1 + \frac{1}{e}$.

Question No.5 (Question Id - 1)

Let X, Y and Z be finite sets and let $f: X \to Y$ and $g: Y \to Z$ be maps.

Which of the following assertions is always true?

- (A) \bigcirc If gof is a bijection, then both g and f are bijections.
- (B) \bigcirc If g is one to one, then $g \circ f$ is also one to one.
- (C) \bigcirc If f is onto, then g of is also onto.
- (D) \bigcirc If gof is onto, then $|Z| \le |Y|$, where |A| denotes the number of elements in any finite set

(Correct Answer)

FirstRanker.com

Question No.7 (Question (d-7)

www.FirstRanker.com

www.FirstRanker.com

What is the value of the integral $\int_0^{\log 3} \frac{dx}{2} \frac{dx}{e^{-x} + e^x}$?

$$(A) \bigcirc \boxed{\frac{\pi}{12}}$$
 (Correct Answer)

(B)
$$\bigcirc \log \left(\sqrt{3} + \frac{1}{\sqrt{3}}\right) - \log 2$$

(C)
$$\bigcirc \sqrt{3} + \frac{1}{\sqrt{3}} - 2$$

$$(D)\bigcirc \frac{\pi}{6}$$

Question No.8 (Question Id - 3)

Let $a_n = (-1)^{n+1} \left(1 + \frac{1}{2n+1} \right)$ for $n \ge 1$. Which of the following is **correct**?

(A)
$$\bigcirc$$
 lim sup $a_n = 1$ and lim inf $a_n = -1$. (Correct Answer)

(B)
$$\bigcirc$$
 lim sup $a_n = 1$ and lim inf $a_n = 1$.

(C)
$$\bigcirc$$
 lim sup $a_n = -1$ and lim inf $a_n = -1$.

(D)
$$\bigcirc$$
 lim sup $a_n = -1$ and lim inf $a_n = 1$.

Question No.9 (Question Id - 2)

Consider a series $\sum_{n=1}^{\infty} a_n$ of real numbers. Which of the following assertions is necessarily **true**?

(A) \bigcirc If $|a_n| \le \frac{n+1}{n^3}$ for all $n \ge 1$, then $\sum_n a_n$ converges conditionally but it does not necessarily converge absolutely.

(B) \bigcirc If $a_n \le \frac{n+1}{n^3}$ for all $n \ge 1$, then $\sum_n a_n$ converges conditionally.

If $-\frac{1}{n^2} \le a_n \le \frac{n+1}{n^3}$ for all $n \ge 1$, then $\sum_n a_n$ converges absolutely. (Correct

(D) \bigcirc If $0 \le a_n \le \frac{n^2 + 1}{n^3}$ for all $n \ge 1$, then $\sum_n a_n$ converges absolutely.

Question No.10 (Question Id - 5)

The sum $\frac{1}{1001} + \frac{1}{1002} + ... + \frac{1}{2000}$ is:

A. less than 1.

B. more than $\frac{1}{2}$.

C. more than log2.

D. less than log2.

Which of the above assertions are correct?

(A) O A, B and C only

(B) O A, B and D only (Correct Answer)

If the is unbounded then it cannot contain a convergent subsequence.

www.FirstRanker.com

www.FirstRanker.com

D. If $\{x_n\}$ is bounded and a subsequence of $\{x_n\}$ converges to a real number L, then $\{x_n\}$ also converges to L.

Which of the above assertions is/are true?

- (A) O A only
- (B) A and B only (Correct Answer)
- (C) O B and C only
- (D) O D only

Question No.2 (Question Id - 23)

Consider the subset

$$\mathbf{N} := \left\{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} : b \in \mathbb{R} \right\}$$

of the group of 2 × 2 matrices

$$G := \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} : a, \ b, \ d \in \mathbb{R}, \ ad = 1 \right\}$$

under matrix multiplication. Which of the following statements is correct?

- (A) O N is not a subgroup of G.
- (B) \bigcirc N is a subgroup of G, but N is not normal.
- (C) N is a subgroup of G and the number of cosets of N in G is finite.
- (D) N is a subgroup of G and there are infinitely many cosets of N in G. (Correct Answer)

Question No.3 (Question Id - 22)

Let G be a group in which every element other than identity has order 2. Then, which of the following statements is necessarily true?

- (A) O G must be finite and abelian.
- (B) O G can be infinite, but G must be abelian. (Correct Answer)
- (C) G is not necessarily abelian, but it must be finite.
- (D) O may be non-abelian as well as infinite.

Question No.4 (Question Id - 18)

What is the area of the portion of the sphere $x^2 + y^2 + z^2 = R^2$ lying between the planes z = R and $z = \frac{\sqrt{3}R}{2}$?

- (A) \bigcirc $\boxed{\mathbb{R}^2(2-\sqrt{3})}$ (Correct Answer)

Question No.5 (Question Id - 21)

Let $A \in M_{4x3}(\mathbb{R})$, $B \in M_{3x4}(\mathbb{R})$ and $C \in M_{4x5}(\mathbb{R})$. Consider the following assertions :

- A. The matrix ABC cannot have rank equal to 4.
- B. AB can have rank 3 but BC cannot have rank 4.
- ABC and BA can have ranks at most 3.
- D. Rank of AB must be less than or equal www.firstRanker.com

- (B) O 2 log2
- (C) O 1 2 log2 (Correct Answer)
- (D) O 1 3 log2

Question No.7 (Question Id - 17)

A function $f: (a, b) \to \mathbb{R}$ is said to be uniformly continuous if for every $\in > 0$ there exists a $\delta > 0$ such that $|f(x) - f(y)| < \varepsilon$ whenever $|x - y| < \delta$ (and δ is independent of x and y).

Let $f:(0, 1) \to \mathbb{R}$ be the map given by $f(x) = \sqrt{x}$. Consider the following assertions:

- A. f is differentiable on (0, 1).
- B. f is differentiable and f is bounded on (0, 1).
- C. f is uniformly continuous on (0, 1).
- D. f is differentiable and f is uniformly continuous on (0, 1).

Which of the above assertions is/are correct?

- (A) O A only
- (B) O A and C only (Correct Answer)
- (C) O A, B and C only
- (D) O A, B and D only

Question No.8 (Question Id - 13)

Let $\sum_{n=0}^{\infty} a_n x^n$ be a power series with real coefficients and radius of convergence R such that

 $0 < R < \infty$. Consider the following assertions:

- (A) If $\sum_{n=0}^{\infty} a_n x^n$ converges for some x with |x| = R, then $\sum_{n=0}^{\infty} a_n x^n$ converges for every x with |x| = R.
- (B) If |x| > R, then $\sup_{k \ge 10} \sum_{n=1}^k |a_n| |x|^n = \infty$.
- (C) If $\sum_{n=0}^{\infty} a_n x^n$ diverges for some x with |x| = R, then $\sum_{n=0}^{\infty} a_n x^n$ diverges for every x with |x| = R.
- (D) Let $S_k(x) = \sum_{n=2}^k a_n x^n$ for all $k \ge 2$. Then, $\{S_k(x)\}_{k=2}^{\infty}$ is a Cauchy sequence for every $x \in (-R, R)$.

Which of the above assertions is/are correct?

- (A) O A and C only
- (B) O B and D only (Correct Answer)
- (C) O D only
- (D) O B only

Question No.9 (Question Id - 19)

Let S be the sphere $x^2 + y^2 + z^2 = \mathbb{R}^2$, **F** be the vector field on \mathbb{R}^3 given by $\mathbf{F} = x^3 \hat{\mathbf{i}} + y^3 \hat{\mathbf{j}} + z^3 \hat{\mathbf{k}}$ and **n** denotes the unit normal vector to the surface S. What is the value of the surface integral $\iint_{\mathbb{R}} \mathbf{F} \cdot \mathbf{n} \, d\sigma$?

B. Let $f: \mathbb{R} \to \mathbb{R}$ be the map given by f(x) = 2x + 3. Then, $\sup\{f(\sin(x) + 5) : x \in \mathbb{R}\} = 15 \text{ and}$ $\inf\{f(\sin(x)+5):x\in\mathbb{R}\}=11$

- C. Let $f: \mathbb{R} \to \mathbb{R}$ be the map given by f(x) = 5x + 5. Then,
- D. Let $f: \mathbb{R} \to \mathbb{R}$ be the map given by f(x) = 3x + 4. Then, $\sup\{f(f(x)): x \in (0, 2)\} = 34$

Which of the above assertions is/are correct?

- (A) O B and D only (Correct Answer)
- (B) O B, C and D only
- (C) O A, C and D only
- (D) A and D only

Question No.11 (Question Id - 11)

Let $X = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}, Y = \{(x, y) \in \mathbb{R}^2 : x = y\}$ and $Z = \{(x, y) \in \mathbb{R}^2 : y = -x\}$. Consider the following assertions :

- A. $X \cup Y \cup Z$ is an equivalence relation on \mathbb{R} .
- B. $X \cup Y$ is a reflexive relation on \mathbb{R} but not symmetric.
- C. $X \cup Y$ is an equivalence relation on \mathbb{R} .
- D. YUZ is an equivalence relation on \mathbb{R} .

Which of the above assertions are correct?

- (A) O A and B only
- (B) A, B and D only
- (C) A and D only (Correct Answer)
- (D) A, C and D only

Question No.12 (Question Id - 20)

Let V be a finite dimensional vector space over \mathbb{R} with dim $V \ge 2$. Fix a non-zero vector $v_0 \in V$. Consider the following assertions:

- A. There is a unique basis of V containing v_0 .
- B. There exist infinitely many bases of V containing v_0 .
- C. There is a unique injective linear map $T: V \to V$ such that $T(v_0) = v_0$.
- D. There exist infinitely many linear isomorphisms $T: V \rightarrow V$ such that $T(v_0) = v_0$.

Which of the above assertions is/are correct?

- (A) O A only
- (B) O C only
- (C) A and C only
- (D) O B and D only (Correct Answer)

For which of the following n does n! have 2020 trailing zeros at the end?

www.FirstRanker.com

- (A) \bigcirc n = 8097 (Correct Answer)
- (B) \bigcirc n = 8085
- (C) \(\cap n = 8080\)
- (D) \bigcirc n = 10100

Save & Print

WWW.FirstRanker.com