www.FirstRanker.com

Question Paper Name: Mathematics 237 30th May 2019 Shift 1 Set1

Subject Name: Mathematics 237 **Creation Date:**

Duration: Total Marks: 100 **Display Marks:** Yes **Share Answer Key With Delivery** Yes

Engine:

Actual Answer Key: Yes

Mathematics 237

Group Number:

Group Id: 128206193

Group Maximum Duration: Group Minimum Duration: Revisit allowed for view?: No Revisit allowed for edit?: No Break time: **Group Marks:** 100

PART 1

Section Id: NWW.FirstRain **Section Number: Section type:** Mandatory **Mandatory or Optional: Number of Questions: Number of Questions to be attempted: Section Marks:** 55 Yes **Display Number Panel: Group All Questions:** No

Sub-Section Number:

Sub-Section Id: 128206524

Question Shuffling Allowed: Yes

Question Number: 1 Question Id: 12820611350 Question Type: MCQ Option Shuffling: No Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 5 Wrong Marks: 0

First Ranker Com Let T be a linear transformation from \mathbb{R}^3 to \mathbb{R}^3 given by T(x,y,z):=(x+y+z) www.FirstRanker.com www.FirstRanker.com Which one of the following is true?

- (a) B is not a basis
- (b) B is a basis for \mathbb{R}^3 and the matrix of T with respect to B is $\begin{pmatrix} 0 & 2 & 4 \\ -1 & 1 & 0 \\ 1 & 3 & 2 \end{pmatrix}$ (c) B is a basis for \mathbb{R}^3 and the matrix of T with respect to B is $\begin{pmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 1 & 3 \end{pmatrix}$ (d) B is a basis for \mathbb{R}^3 and the matrix of T with respect to B is $\begin{pmatrix} 3 & 0 & 0 \\ -1 & 1 & 0 \\ 1 & 1 & 2 \end{pmatrix}$

Options:

12820644847. A

12820644848. B

12820644849. C

12820644850. D

Question Number: 2 Question Id: 12820611351 Question Type: MCQ Option Shuffling: No Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 5 Wrong Marks: 0

Let $f,g:[0,\infty)\longrightarrow\mathbb{R}$ be continuous functions satisfying the following equations

$$\int_{0}^{x^{2}} f(t)dt = x^{2}(1+x),$$

$$\int_{0}^{x^{2}(1+x)} g(t)dt = x^{2}.$$

Which one of the following is necessarily true?

- (a) $f(x)^2g(x)^2(1+g(x)) = 1$
- (b) $f(x^2)g(x^2(1+x)) = 1$ (c) $f(x)^2/(g(x)^2(1+g(x))) = 1$
- (d) $f(x^2) = g(x^2(1+x))$

Options:

12820644852. B

12820644853, C

12820644854. D

Question Number: 3 Question Id: 12820611352 Question Type: MCQ Option Shuffling: No Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 5 Wrong Marks: 0

The series
$$\sum_{n=1}^{\infty} \log \cos(\frac{1}{n})$$

- (a) converges absolutely
- (b) converges conditionally but not absolutely
- (c) diverges to $+\infty$
- (d) diverges to $-\infty$

Options:

www.FirstRanker.com

www.FirstRanker.com

12820644858. D

Question Number: 4 Question Id: 12820611353 Question Type: MCQ Option Shuffling: No Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 5 Wrong Marks: 0

Consider the following statements:

- [S1] The number of groups of order 15 up to isomorphism is 2.
- [S2] The number of groups of order 15 up to isomorphism is 1.
- [S3] All groups of order 15 are Abelian.
- [S4] There is a group of order 15 which is non-Abelian.

Which one of the following is necessarily true?

- (a) Only [S1] and [S4]
- (b) Only [S1] and [S3]
- (c) Only [S2] and [S3]
- (d) Only [S3]

Options:

12820644859. A

12820644860. B

12820644861. C

12820644862. D

Question Number: 5 Question Id: 12820611354 Question Type: MCQ Option Shuffling: No Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 5 Wrong Marks: 0

2

Consider the series S_1 and S_2 given by

$$S_1 := \sum_{n=1}^{\infty} (1 - \frac{1}{2^n})^n$$

$$S_2 := \sum_{n=1}^{\infty} \frac{(-1)^n \log^3 n}{n}.$$

Which one of the following is true?

- (a) S₁ converges and S₂ converges absolutely
- (b) S_1 converges and S_2 converges conditionally but not absolutely
- (c) S_1 converges and S_2 diverges
- (d) S_1 diverges and S_2 converges

Options:

12820644863. A

12820644864. B

12820644865. C

12820644866. D

Question Number : 6 Question Id : 12820611355 Question Type : MCQ Option Shuffling : No Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

Correct Marks: 5 Wrong Marks: 0

C centred at (0,3) and radius 2. Then, the value of I equals

- (a) 0
- (b) 2π
- (c) -2π
- (d) None of the above

Options:

12820644867. A

12820644868. B

12820644869, C

12820644870. D

Question Number: 7 Question Id: 12820611356 Question Type: MCQ Option Shuffling: No Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 5 Wrong Marks: 0

For subsets T_1 and T_2 of \mathbb{R} , we define $T_1 + T_2 := \{t_1 + t_2 \mid t_1 \in T_1, t_2 \in T_2\}$. Let $S_1 := (\mathbb{Q} \cap [0,1]) + \{\sqrt{2}\}$ and $S_2 := (\mathbb{Q} \cap [1,2]) + \{\sqrt{3}\}$. Let $S = S_1 \cup S_2$. Which one of the following is true?

- (a) There exists a one to one map from [0, 1] to S
- (b) There exists an onto map from S to [0,1]
- (c) $\#S_1 = \#S_2$
- (d) None of the above

Options:

12820644871. A

12820644872. B

12820644873. C

12820644874. D

Question Number: 8 Question Id: 12820611357 Question Vpp Single Line Question Option: No Option Orientation: Vertical ype: MCQ Option Shuffling: No Display Question Number: Yes

Correct Marks: 5 Wrong Marks: 0

Let
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
. Consider the following statements:

- [S1] $A^k = 0$ for some $k \ge 1$.
- [S2] A has two distinct real eigenvalues.
- [S3] A has rank 1.

Which one of the following is necessarily true?

- (a) Only [S1]
- (b) Only [S2]
- (c) Only [S2] and [S3]
- (d) Only [S3]

Options:

12820644875. A

1282<u>0644876_B</u>

12820644877, C

12820644878. D

Juestion Numberstranker's Choice 0611358 Question Tipe: MCO Option Shuffling: No. Display Question Number Single Line Question Option: No. Option Orientation Www.FirstRanker.com

Correct Marks: 5 Wrong Marks: 0

Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous map and $S = \left\{\pi + \frac{(-1)^n}{2n+1} \mid n \in \mathbb{N}\right\} \cup (0,1)$. Which one of the following is necessarily true?

- (a) f((0,1)) is an open set
- (b) f(S) is compact
- (c) f(S) is compact
- (d) f(S) is closed but not compact

Options:

12820644879. A

12820644880. B

12820644881. C

12820644882. D

Question Number: 10 Question Id: 12820611359 Question Type: MCQ Option Shuffling: No Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 5 Wrong Marks: 0

Let $f:\mathbb{R}^2 \to \mathbb{R}$ be a map that sends $(x,y) \in \mathbb{R}^2$ to f(x,y). Which one of the following is necessarily true?

- (a) If $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist at (0,0), then f is continuous at (0,0)(b) If $\frac{\partial f}{\partial x}$ exists at (0,0), then f is continuous separately in both variables x and yat (0,0)
- (c) If f is continuous at (0,0), then $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist at (0,0)
- (d) None the above

Options:

12820644883. A

12820644884. B

12820644885. C

12820644886. D

Question Number: 11 Question Id: 128206118 0 Question Type Single Line Question Option: No Option Option: Vertical Question Type: MCQ Option Shuffling: No Display Question Number: Yes

Correct Marks: 5 Wrong Marks: 0

Let p be a prime number. Let $\sum_{n=1}^{p-1} \frac{1}{n} = \frac{\alpha}{\beta}$, where α, β are positive integers and are relatively prime. Which one of the following is necessarily true?

- (a) $p \mid \alpha$, if p = 3, 5, 7 and $p \nmid \alpha$, if $p \geq 11$
- (b) $p \mid \alpha$ for all odd prime numbers p
- (c) $\beta \equiv -1 \mod p$, for all p
- (d) None of the above

Options:

12820644887. A

12820644888. B

12820644889. C

www.FirstRanker.com

www.FirstRanker.com

PART 2

Section Id: 128206326

Section Number: 2

Section type:

Mandatory or Optional:

Online

Mandatory

Number of Questions: 15
Number of Questions to be attempted: 15
Section Marks: 45
Display Number Panel: Yes
Group All Questions: No

Sub-Section Number:

Sub-Section Id: 128206525

Question Shuffling Allowed: Yes

Question Number: 12 Question Id: 12820611361 Question Type: MCQ Option Shuffling: No Display Question Number: Yes

Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 3 Wrong Marks: 0

Consider the permutation $\sigma = (1\ 2)(3\ 4)(4\ 5\ 6)(1\ 2\ 3)$ in S_7 . Then, the order of σ equals

- (a) 2
- (b) 3
- (c) 5
- (d) 6

Options:

12820644891. A

12820644892. B

12820644893. C

12820644894. D

Question Number: 13 Question Id: 12820611362 Question Type: MCQ Option Shuffling: No Display Question Number: Yes Single Line Question Option: No Option Chentation: Vertical

Correct Marks: 3 Wrong Marks: 0

What is the volume of the region in the positive octant in \mathbb{R}^3 bounded by the planes x = 0, y = 0, z = 0, x = 3 and the parabolic cylinder $z = 4 - y^2$?

- (a) 4
- (b) 8
- (c) 16
- (d) ∞

Options:

12820644895. A

12820644896. B

12820644897. C

12820644898. D

Single Line Question Option: No Option Orientation Www.rtical Com Shuffling Www.FirstRanker.com

Correct Marks: 3 Wrong Marks: 0

How many real roots does the polynomial $3X^5 + 9X + 7$ have?

- (a) 1
- (b) 3
- (c) 5
- (d) 0

Options:

12820644899. A

12820644900. B

12820644901. C

12820644902. D

Question Number: 15 Question Id: 12820611364 Question Type: MCQ Option Shuffling: No Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 3 Wrong Marks: 0

The value of $\lim_{x\to 0+} (1+\frac{1}{x})^{2x}$ is

- (a) 0
- (b) 1
- (c) e^2
- $(d) + \infty$

Options:

- 12820644903. A
- 12820644904. B
- 12820644905, C
- 12820644906. D

Question Number: 16 Question Id: 12820611365 Question Type: MCQ Option Shuffling: No Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 3 Wrong Marks: 0

Let $m \equiv (20)^{18} \pmod{7}$. Then, $m \mod 7$ is equal to

- (a) 6
- (b) 2
- (c) 1
- (d) None of these

Options:

12820644907. A

12820644908. B

12820644909. C

12820644910. D

Question Number: 17 Question Id: 12820611366 Question Type: MCQ Option Shuffling: No Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 3 Wrong Marks: 0

FirstRanker.com
$$S = \left\{2\pi + (-1)^n \tan\left(\frac{(-1)^n}{2n+1}\right) \right. \quad \text{www.FirstRanker.com} \quad \text{www.FirstRanker.com} \\ \left. \left. \left(x \in (0,\pi/2) \right) \right. \right\} \\ \left. \left. \left(x \in (0,\pi/2) \right) \right\} \\ \left. \left(x \in (-\infty,0) \right) \right\}.$$

Then, the set of limit points of S is

- (a) (0,4]
- (b) $(0,4] \cup \{2\pi\}$
- (c) $[0,4] \cup \{2\pi\}$
- (d) $(-\infty, 4] \cup \{2\pi\}$

Options:

12820644911. A

12820644912. B

12820644913. C

12820644914. D

Question Number: 18 Question Id: 12820611367 Question Type: MCQ Option Shuffling: No Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 3 Wrong Marks: 0

Let a map $f:(-1,1)\to\mathbb{R}$ be continuous at 0. Consider the following statements:

- [S1] $\lim_{x\to 0+} f(x) = f(0) = \lim_{x\to 0-} f(x)$
- [S2] $\sup\{f(x) \mid x \in (-1,0)\} = f(0) = \inf\{f(x) \mid x \in (0,1)\}$
- [S3] $\lim_{n\to\infty} f(\frac{(-1)^n}{2n+1})$ exists and equals f(0).
- [S4] $\sup\{f(\frac{1}{n}) \mid n \in \mathbb{N}\} = f(0) = \inf\{f(\frac{1}{n}) \mid n \in \mathbb{N}\}\$

Which of the above statements are necessarily true?

- (a) Only [S1]
- (b) Only [S1] and [S3]
- (c) Only [S1], [S2] and [S3]
- (d) Only [S1], [S3] and [S4]

Options:

12820644915. A

12820644916. B

12820644917. C

12820644918. D

Question Number: 19 Question Id: 12820611368 Question Type: MCQ Option Shuffling: No Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 3 Wrong Marks: 0

Let $f:(-1,1)\to\mathbb{R}$ be a differentiable function. Which one of the following is necessarily true?

- (a) If f'(0) > 0, then f(x) > f(0) for all $x \in (0, 1)$.
- (b) If f'(0) < 0, then f(x) < f(0) for all $x \in (0, \delta)$ for some $\delta > 0$.
- (c) If f'(0) = 0, then f(x) = f(0) for all $x \in (-\delta, \delta)$ for some $\delta > 0$.
- (d) If f'(0) > 0, then f(0) > 0.

12820644922. D

Question Number: 20 Question Id: 12820611369 Question Type: MCQ Option Shuffling: No Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 3 Wrong Marks: 0

Let $S = \mathbb{Q} \cap [0.1]$. Let f be a bijection from \mathbb{N} to S. Which one of the following is necessarily true?

- (a) $\frac{1}{2}$ is a limit point but $\frac{1}{\sqrt{2}}$ is not a limit point of the sequence $\{f(n)\}_{n\geq 1}$
- (b) $\frac{1}{\sqrt{2}}$ is a limit point but $\frac{1}{2}$ is not a limit point of the sequence $\{f(n)\}_{n\geq 1}$
- (c) We can choose a bijection f from \mathbb{N} to S such that $\frac{1}{\sqrt{2}}$ is not a limit point of of the sequence $\{f(n)\}_{n\geq 1}$
- (d) Both $\frac{1}{2}$ and $\frac{1}{\sqrt{2}}$ are limit points of the sequence $\{f(n)\}_{n\geq 1}$

Options:

12820644923. A

12820644924. B

12820644925. C

12820644926. D

Question Number : 21 Question Id : 12820611370 Question Type : MCQ Option Shuffling : No Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

Correct Marks: 3 Wrong Marks: 0

Which one of the following is true?

- (a) The number of groups of order 14 up to isomorphism is 2
- (b) The number of groups of order 14 up to isomorphism is 3
- (c) The number of groups of order 26 up to isomorphism is 1
- (d) The number of groups of order 14 up to isomorphism is 1

Options:

12820644927. A

12820644928. B

12820644929. C

12820644930. D

~ O

N

Question Number : 22 Question Id : 12820611371 Question Type : MCQ Option Shuffling : No Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

Correct Marks: 3 Wrong Marks: 0

Which one of the following is necessarily true?

- (a) If $f: \mathbb{Q} \to \mathbb{R}$ is an injective map, then $\overline{f(\mathbb{Q})}$ is uncountable
- (b) There exists no surjective map from N onto Q
- (c) There exists a surjective map from $\mathbb{Q} \times \mathbb{R}$ onto \mathbb{C}
- (d) None of the above

Options:

12820644931. A

12820644932. B

12820644933. C

12820644934. D

Correct Marks: 3 Wrong Marks: 0

www.FirstRanker.com

www.FirstRanker.com

Consider the statements:

[S1] $\overline{\{\sin(\frac{1}{n}) \mid n \geq 1\}}$ is uncountable.

[S2] $\{e^{\frac{1}{n}} \mid n \ge 1\}$ is uncountable.

[S3] $\{\pi^n \mid n \geq 1\}$ is uncountable.

Which one of the following is the correct option?

(a) None of [S1], [S2] and [S3] is true

(b) All of [S1], [S2] and [S3] are true

(c) Only [S1] is true

(d) Only [S1] and [S2] are true

Options:

12820644935. A

12820644936. B

12820644937. C

12820644938. D

Question Number : 24 Question Id : 12820611373 Question Type : MCQ Option Shuffling : No Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

Correct Marks: 3 Wrong Marks: 0

Let $A \in M_2(\mathbb{R})$ such that $AA^T = A^TA = I$ and det(A) = 1. Which one of the following is necessarily true?

(a) Av = v for some unit vector $v \in \mathbb{R}^2$

(b) $Av \neq v$ for some unit vector $v \in \mathbb{R}^2$

(c) $||Av|| \neq 1$ for some unit vector $v \in \mathbb{R}^2$

(d) None of the above

Options:

12820644939. A

12820644940. B

12820644941. C

12820644942. D

Question Number : 25 Question Id : 128206 13. 4 Question Type : MCQ Option Shuffling : No Display Question Number : Yes Single Line Question Option : No Option Crientation : Vertical

Correct Marks: 3 Wrong Marks: 0

Let r be a positive real number. Then, $\int_0^\infty \frac{dx}{1+e^{rx}}$ is equal to

(a) $\frac{\log 2}{r}$

(b) $\frac{1}{r}$

(c) $\frac{1}{\mathbf{e}^{n}}$

(d) $\frac{1}{\mathbf{e}^{r}}$

Options:

12820644943. A

12820644944. B

12820644945. C

12820644946. D

- (a) Undefined
- (b) $\sqrt{\pi}$
- (c) $\frac{e+1}{2e}$ (d) $\frac{e-1}{2e}$

Options:

12820644947. A

12820644948. B

12820644949. C

12820644950. D

MWW.FirstRanker.com