Roll No. \square
Total No. of Questions: 18

B.Tech. (ECE/IT/EEE/CSE/BT/Civil/ME/EE/EIE) (Sem.-2,3)
 ENGG. MATHEMATICS-I/ENGG. MATHEMATICS -II/MATHEMATICS-II/APPLIED MATHEMATICS-II/APPLIED MATHEMATICS-III
 Subject Code : AM-102/201 M.Code : 54002

Time : 3 Hrs.
Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION - B \& C. have FOUR questions each.
3. Attempt any FIVE questions from SECTION B \& C carrying EIGHT marks each.
4. Select atleast TWO questions from SECTION - B \& C.

SECTION-A

Answer the following :

1) Are the vectors $(1,1,-1),(2,3,-5),(2,-1,4)$ linearly dependent.
2) Find the eigen values of the matrix $\left[\begin{array}{ll}3 & 2 \\ 2 & 3\end{array}\right]$.
3) Is the differential equation $\left(2 x y \cos x^{2}-2 x y+1\right) d x+\left(\sin x^{2}-x^{2}\right) d y=0$ exact?
4) Solve $\left(2 D^{2}-2 D-1\right) y=0$.
5) Write any two applications of differential equations.
6) Find velocity of a particle which moves along the curve $\vec{r}=2 \sin 3 t \hat{i}+2 \cos 3 t \hat{j}+8 t \hat{k}$.
7) State Green's theorem.
8) If $\overrightarrow{\mathrm{A}}=x^{2} z \hat{i}-2 y^{3} z^{2} \hat{j}+x y^{2} z \hat{k}$, then find $\operatorname{Div}(\overrightarrow{\mathrm{A}})$ at the point $(1,-1,1)$.
9) Write formulae of mean and variance of binomial distribution.
10) Define null hypothesis.

SECTION-B

11) Find the rank of the matrix $\left[\begin{array}{lll}2 & 3 & 4 \\ 4 & 3 & 1 \\ 1 & 2 & 4\end{array}\right]$ after converting into normal form.
12) Solve the differential equation $\frac{d y}{d x}+\frac{3 y}{x}=\frac{\sin x}{x^{3}}$.
13) Solve the differential equation $\left(\mathrm{D}^{2}+2 \mathrm{D}+1\right) y=x$.
14) Solve the differential equation $\left(D^{2}+4\right) y=\tan 2 x$ using method of variation of parameters.

SECTION-C

15) Find the unit normal vector to the surface $x^{2} y+2 x z^{2}=8$ at the point $(1,0,2)$.
16) Verify Gauss divergence theorem for $\overrightarrow{\mathrm{F}}=4 x z \hat{i}-\int^{2} \hat{j}+y z \hat{k}$ over the cube $x=0, x=1$, $y=0, y=1, z=0, z=1$.
17) A box A contains 2 white and 4 black balls. Another box B contains 5 white and 7 black balls. A ball is transferred from the box A to the box B. Then a ball is drawn from the box B. find the probability that it is white.
18) A certain stimulus administered to each of 12 patients resulted in the following increases of blood pressure : $5,2,8,-1,3,0,-2,1,5,0,4,6$. Can it be concluded that the stimulus will in general be accompanied by an increase in blood pressure. (Given that for $v=11$, $t_{0.05}=2.2$)

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

