\square Total No. of Pages : 02
Total No. of Questions : 18

> B.Tech.(CSE)/(IT) (2012 to 2017) (Sem.-3)
> DIGITAL CIRCUITS \& LOGIC DESIGN
> Subject Code : BTCS-303
> M.Code : 56593

Time : 3 Hrs.

Max. Marks : 60

INSTRUCTION TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

Answer briefly :

1) Perform 2 's complement subtraction of (7) $)_{10}-(11)_{10}$
2) What is race around condition? How it can be avoided?
3) How many states can an n-bit Ring counter and an n-bit Johnson's counter have?
4) What is meant by the term edge triggered?
5) How many flip-flops are required to design a mod-7 up down counter?
6) What is difference between static RAM and dynamic RAM?
7) What is EEPROM?
8) What are the advantages of ring counter?
9) Differentiate between A / D and D / A conversion techniques.
10) Write a short note on : SOP and POS.

SECTION-B

11) Prove the following identities using Boolean algebra : $(\mathrm{A}+\mathrm{B})\left(\mathrm{A}+(\mathrm{AB})^{\prime}\right) \mathrm{C}+\mathrm{A}^{\prime}\left(\mathrm{B}+\mathrm{C}^{\prime}\right)+\mathrm{A}^{\prime} \mathrm{B}+\mathrm{ABC}=\mathrm{C}(\mathrm{A}+\mathrm{B})+\mathrm{A}^{\prime}\left(\mathrm{B}+\mathrm{C}^{\prime}\right)$
12) A microprocessor uses RAM chips of 1024×1 capacity.
(a) How many chips will be required and how many address lines will be connected to provide capacity of 1024 bytes?
(b) How many chips will be required to obtain a memory of capacity of 16 K bytes?
13) What are the characteristics of digital ICs used to compute their performance?
14) Design an FPLA circuit, programed to implement a 3- bit binary to Gray conversion.
15) Design a sequence detector to detect the sequence $\mathbf{1 0 1 0}$ (overlapping of the sequence is permitted). Use D flip-flop to design the circuit. Show the intermediate design steps :
(a) State Diagram
(b) Truth Table/ Excitation table
(c) Logic Diagram of the circuit.

SECTION-C

16) A combinational circuit has 3 inputs A, B, C and output F. F is true for following input combinations

A is False, B is True
A is False, C is True

A, B, C are False

A, B, C are True

(a) Write the Truth table for F. Use the conyention True $=1$ and False $=0$.
(b) Write the simplified expression for F in SOP form.
(c) Write the simplified expression for F in POS form.

Draw logic circuit using minimum number of 2-input NAND gates.
17) Design a 8 to 1 multiplexer by using four variable function given by
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\mathbb{\Sigma}(\mathbf{0}, 1,3,4,8,9,15)$
18) What are synchronous counters? Design a 3-bit Gray code counter using T-Flip Flop.

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

