

Roll No. Total No. of Pages: 03

Total No. of Questions: 09

B.Tech. (Software Engineering) (Sem.-1) LINEAR ALGEBRA FOR ENGINEERS

Subject Code: MA-1300 M.Code: 77256

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION B & C. have FOUR questions each.
- 3. Attempt any FIVE questions from SECTION B & C carrying EIGHT marks each.
- 4. Select atleast TWO questions from SECTION B & C.

SECTION-A

1. Solve the following:

- a) Find the general solution of the linear system whose augmented matrix is $\begin{bmatrix} 1 & -3 & -5 & 0 \\ 0 & 1 & -1 & -1 \end{bmatrix}$.
- b) Reduce the matrix $\begin{pmatrix} 1 & 3 & 5 \\ 2 & -1 & 4 \\ -2 & 8 & 2 \end{pmatrix}$ to row echelon form.
- c) Find the inverse of the matrix $\begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$.
- d) Examine whether the transformation $T: R^2 \to R^2$ defined as $T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} |x| \\ -y \end{pmatrix}$ is linear or not?
- e) Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and let k be a scalar. Find a formula that relates det kA to k and det A.
- f) Let $a = \begin{bmatrix} 2 \\ -5 \\ -1 \end{bmatrix}$ and $b = \begin{bmatrix} -7 \\ -4 \\ 6 \end{bmatrix}$. Compute $||a+b||^2$.

1 | M-77256 (S1)-2591

- g) Show that similar matrices have same eigen values.
- h) If λ is an eigen value of A, show that λ^{-1} is an eigen value of A^{-1} .
- i) Check whether the vectors $u = \begin{bmatrix} 12 \\ 3 \\ -5 \end{bmatrix}$ and $v = \begin{bmatrix} 2 \\ -3 \\ 3 \end{bmatrix}$ are orthogonal or not?
- j) The characteristic roots of $A = \begin{pmatrix} 8 & -6 & 2 \\ -6 & k & -4 \\ 2 & -4 & 3 \end{pmatrix}$ are 0, 3, 15. Find the value of k.

SECTION-B

2. a) Determine if the following system is consistent:

$$y - 4z = 8$$
$$2x - 3y + 2z = 1$$
$$4x - 8y + 12z = 1$$

- b) Let $u = \begin{bmatrix} 1 \\ 4 \\ -2 \end{bmatrix}$, $v = \begin{bmatrix} -2 \\ -3 \\ 7 \end{bmatrix}$ and $w = \begin{bmatrix} 4 \\ 1 \\ h \end{bmatrix}$, For what value(s) of h is w in the plane spanned by u and v?
- by u and v?

 3. a) Given $A = \begin{pmatrix} 1 & 2 & 4 \\ 0 & 1 & 5 \\ -2 & -4 & -3 \end{pmatrix}$ and $b = \begin{pmatrix} -2 \\ 2 \\ 9 \end{pmatrix}$, write the augmented matrix for the linear system that corresponds to the matrix equation Ax = b. Then solve the system and write the solution as a vector.
 - b) Find the inverse of the matrix $\begin{pmatrix} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 4 & -3 & 8 \end{pmatrix}$ using row transformations.
- 4. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation defined by $T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ x+y \\ x+y+z \end{pmatrix}$. Find the matrix representation of T w.r.t. the ordered basis $B_1 = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$ and $B_2 = \{(1, 0, 1), (1, 1, 0), (0, 1, 1)\}$.

2 | M-77256 (S1)-2591

5. a) Let $v_1 = (1, -1, 0)$, $v_2 = (0, 1, -1)$ and $v_3 = (0, 0, 1)$ be elements of R^3 . Show that the set of vectors $\{v_1, v_2, v_3\}$ is linearly independent.

b) Prove that
$$\begin{vmatrix} 1 & w & w^2 \\ w & w^2 & 1 \\ w^2 & 1 & w \end{vmatrix} = 0$$
, where w is a cube root of unity.

SECTION-C

6. a) Let
$$u_1 = \begin{bmatrix} 2 \\ 3 \\ -5 \end{bmatrix}$$
, $u_2 = \begin{bmatrix} -4 \\ -5 \\ 8 \end{bmatrix}$, and $v = \begin{bmatrix} 8 \\ 2 \\ -9 \end{bmatrix}$. Determine whether v is in the subspace of \mathbb{R}^3 generated by u_1 and u_2 .

b) Solve the following system of linear equations by Cramer's rule :

$$x + y + z = 6$$
, $x - y + 2z = 5$, $3x + y + z = 8$

- 7. Determine the eigen values and corresponding eigen vectors of the matrix $\begin{pmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{pmatrix}$.
- 8. Diagonalize the matrix $\begin{pmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$.
- 9. Find an orthogonal basis or the coloumn space of the matrix $\begin{bmatrix} 3 & -5 & 1 \\ 1 & 1 & 1 \\ -1 & 5 & 3 \\ 3 & -7 & 8 \end{bmatrix}$

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

3 | M-77256 (S1)-2591