

www.FirstRanker.com

www.FirstRanker.com

Total No. of Pages : 02

Total No. of Questions : 18

B.Tech.(CSE) (2012 to 2017) (Sem.-7,8) THEORY OF COMPUTATION Subject Code : BTCS-702 M.Code: 71894

Time: 3 Hrs.

Max. Marks: 60

INSTRUCTION TO CANDIDATES :

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks 1. each.
- SECTION-B contains FIVE questions carrying FIVE marks each and students 2. have to attempt ANY FOUR questions.
- SECTION-C contains THREE questions carrying TEN marks each and students 3. have to attempt ANY TWO questions.

SECTION-A

Answer Briefly :

- Q1. Define Mealy and Moore machines.
- ercorr Q2. Define the term acceptability of a string.
- Q3. Define pumping lemma for regular sets.
- Q4. Differentiate between left linear and right linear regular grammar.
- Q5. Define yield and ambiguity in CFG.
- Q6. Give example CNF and GNF productions.
- O7. Differentiate between deterministic and non-deterministic PDA.
- Q8. Give rules for converting CFG to PDA.
- Q9. Give instantaneous description of Turing machine.
- Q10. What do you mean by halting problem of TM?

www.FirstRanker.com

SECTION-B

Q11. Construct a DFA equivalent to :

 $M = \left(\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}, \{0, 1\}\right), \delta, q_{0}, \{q_{3}, \}, \text{ where } \delta \text{ is given by following state table :}$

State/Σ	a	b
$\rightarrow q_0$	<i>q</i> ₀ , <i>q</i> ₁	q_0
q_1	q_2	q_1
q_2	<i>q</i> ₃	q_3
$\left(\begin{array}{c} q_3 \end{array}\right)$		q_2

- Q12. Explain in detail the Chomsky classification of languages.
- Q13. Define regular sets and write its closure properties.
- Q14. Prove that $P + PQ^*Q = a^*bQ^*$ where $P = b + aa^*b$ and Q is any regular expression Describe **any two** representation of TM.
- Q15. Find a reduced grammar equivalent to the given grammar.

 $S \rightarrow AC | B, A \rightarrow a, C \rightarrow c | BC, E \rightarrow aA | e$ SECTION-C

Q16. Find a grammar in GNF equivalent to the grammar

 $E \rightarrow E + T | T$ $T \rightarrow T * F | F$ $F \rightarrow (E) | a$

- Q17. Design Turing Machine of $\{0^n1^n \mid n \ge 1\}$.
- Q18. Describe PDA with its representations. Also write rules of converting PDA to CFG.

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.