Roll No. \square Total No. of Pages : 02
Total No. of Questions: 09

B.Tech.(ECE) (2012 to 2017) / (ETE) (Sem.-4)
 PULSE WAVE SHAPING AND SWITCHING
 Subject Code: BTEC-405
 M.Code : 57597

Time: 3 Hrs.
Max. Marks : 60

INSTRUCTIONS TO CANDIDATES:

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.
4. Any missing data can be assumed appropriately.

SECTION-A

Q1. Answer briefly :
a) Draw the input and output waveforms when sine wave is given to the pure inductor.
b) What is the difference between average value and peak value?
c) Define the role of positive feedback in electronic circuits.
d) What do you mean by bistable multivibrator?
e) Define UTP in Schmitt trigger.
f) Only write the expression for gate width in monostable multivibrator.
g) Define the cut in voltage in silicon diode.
h) Draw the output response if square wave is applied to the RC high pass circuit.
i) Only draw a circuit that sliced off the negative cycle.
j) List the applications of operational amplifier comparator.

SECTION-B

Q2. Define Delay time, rise \& fall time and storage time with waveform in transistor switching.

Q3. Differentiate between linear and non-linear wave-shaping circuits.
Q4. For a common emitter circuit, $\mathrm{V}_{\mathrm{CC}}=18 \mathrm{~V}, \mathrm{R}_{\mathrm{C}}=4 \mathrm{k} \Omega$ and $\mathrm{I}_{\mathrm{B}}=0.5 \mathrm{~mA}$.
a) Determine the value of $\mathrm{h}_{\mathrm{fe}}(\mathrm{min})$ for saturation to occur.
b) If R_{C} is changed to $1.5 \mathrm{k} \Omega$, will the transistor be saturated?

Q5. Explain how a high pass RC circuit works as a differentiator.
Q6. Explain the working of attenuator.

SECTION-C

Q7. The fixed-bias bistable multivibrator uses NPN transistors with $\mathrm{h}_{\mathrm{fe}}=25$. The circuit parameters are $\mathrm{V}_{\mathrm{CC}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=3 \mathrm{~V}, \mathrm{R}_{\mathrm{C}}=2 \mathrm{k} \Omega, \mathrm{R}_{1}=7 \mathrm{k} \Omega, \mathrm{R}_{2}=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{CE}}(\mathrm{sat})$ $=0.5 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{BE}}(\mathrm{sat})=0.8 \mathrm{~V}$. Find the stable state voltages and currents.

Q8. With the help of circuit diagrams, expressions and waveforms explain the working of monostable multivibrator.

Q9. Explain any two with necessary diagrams ;
a) Schottky diode
b) Emitter coupled monostable multivibrator.
c) Positive and negative clipper.

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

