Roll No. \square Total No. of Pages : 03
Total No. of Questions : 09

```
B.Tech.(ECE) (2018 Batch) (Sem.-3)
NETWORK THEORY
Subject Code : BTEC-304-18
M.Code : 76447
```

Time : 3 Hrs.
Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

1. Write briefly :
a) Define maximum power transfer theorem and state the conditions for maximum power transfer for dc and ac circuits.
b) State convolution theorem.
c) Define Transmission Parameters
d) A series RL circuit has $\mathrm{R}=10 \mathrm{~K} \Omega, \mathrm{~L}=10 \mathrm{mH}$ and $\mathrm{C}=1 \mu \mathrm{~F}$. Find the Transfer function of the circuit.
e) Define the necessary and sufficient conditions for a polynomial to be Hurwitz.
f) Define: transfer function, pole, zero.
g) Define : image impedance and Quality Factor.
h) Give the properties of LC circuit.
i) State the advantages of 3-phase supply over single phase.
j) Find the Laplace Transform of
i) $\mathrm{e}^{-5 t} \cos 2 t$
ii) $t e^{-2 t}$

SECTION-B

2. For the given two port network calculate the Impedance parameters.

FIG. 1

3. Find whether the given function is a positive real function?

$$
F(s)=\frac{s^{2}+50 s+14}{s+12}
$$

4. Determine the exponential form of Fourier series expansion for periodic wave shown in Fig.2.

FIG. 2
5. In the circuit shown, steady state is reached with switch open. Switch is closed at $\mathrm{t}=0$. Determine $i(t)$ and $\gamma(t)$ for $t>0$. Fig. 3

FIG. 3
6. What are different types of filter? Explain Butterworth Filter.

SECTION-C

7. The driving point impedance is given by :

$$
z(s)=\frac{(s+1)+(s+4)}{(s)(s+2)}
$$

Obtain the Foster-I and Foster-II forms.
8. An unbalanced three-wire, star connected load has a voltage of 400 V , the loads are : $(4+\mathrm{j} 8),(3+\mathrm{j} 4)$ and $(15+\mathrm{j} 20) \Omega$. Determine line currents and voltage across each phase impedance.
9. Find current I in the 5Ω resistor using Thevenin theorem and verify the result using Norton theorem Fig. 4.

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

