FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com

Roll No.						

Total No. of Pages : 02

Total No. of Questions : 09

B.Tech.(EE/EEE) (Sem.-5) NUMERICAL ANALYSIS Subject Code : EE-311/AM-351 M.Code : 57027

Time: 3 Hrs.

Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

1. Write briefly :

- a) State intermediate value property.
- b) State the condition where Newton's method fails.
- c) Using Euler's method, find y(1), given that y' = x + y and y(0) = 1 with h = 1.
- d) Write the normal equations for fitting a straight line to the data using a method of least squares.
- e) Show that Newton's method has quadratic rate of convergence.
- f) Use Picard's method to solve $\frac{dy}{dx} = 2x + y^2$ upto third approximation where y(0) = 0.
- g) Write the iterative formula for method of false position.
- h) What is the condition of convergence of fixed point iteration method ?
- i) Write a short note on finite difference method.
- j) Use Taylor's series method to solve $\frac{dy}{dx} = 2x 3y$ at x = 0.1, given that y(0) = 1.

SECTION-B

2. Use iteration method to obtain the root of equation $x^3 - 15x + 8 = 0$ correct to four decimal places.

1 M-57027

www.FirstRanker.com

3. Solve the following system of equation using the Gauss-elimination method :

$$3x - y + 2z = 12$$

 $x + 2y + 3z = 11$
 $2x - 2y - z = 2.$

4. Fit a curve of the form $y = ab^x$ to the given data :

y(2) = 144, y(3) = 172.8, y(4) = 207.4, y(5) = 248.8, y(6) = 298.5.

5. Using modified Euler's method, find an approximate value of y (0.3), given that y(0) = 0 and

$$\frac{dy}{dx} = 1 - y + e^{y}$$

with h = 0.1

FirstRanker.com

6. Find the value of $\frac{dy}{dx}$ at x = 40 from the following data :

[<i>x</i> :	0	10	20	30	40
	<i>y</i> :	1	0.984	0.939	0.866	0.766

SECTION-C

7. Use the method of triangularization to solve the system of equations

$$x + 3y + z = 3$$
$$x + 4y + 2z = 3$$
$$x + 2y - 3z = 6$$

- 8. For the given initial value problem (IVP), $\frac{dy}{dx} = x y^2$, y(0) = 1, estimate the value of y (0.2) using Runge-Kutta method of fourth order with step size h = 0.1.
- 9. The velocities of a car running on a straight road from rest position at intervals of 2 minutes are given below :

Times (in minutes) :	2	4	6	8	10	12
Velocity (in km/hr) :	22	30	27	18	7	0

Find the total distance covered by the car in 12 minutes.

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

2 | M-57027