\square
Total No. of Questions : 09

B.Tech.(EE/EEE) (Sem.-5)
 NUMERICAL ANALYSIS
 Subject Code : EE-311/AM-351
 M.Code : 57027

Time : 3 Hrs.

Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

1. Write briefly :
a) State intermediate value property.
b) State the condition where Newton's methodfails.
c) Using Euler's method, find y (1), giventhat $y^{\prime}=x+y$ and $y(0)=1$ with $h=1$.
d) Write the normal equations for fitting a straight line to the data using a method of least squares.
e) Show that Newton's method has quadratic rate of convergence.
f) Use Picard's method to solve $\frac{d y}{d x}=2 x+y^{2}$ upto third approximation where $y(0)=0$.
g) Write the iterative formula for method of false position.
h) What is the condition of convergence of fixed point iteration method?
i) Write a short note on finite difference method.
j) Use Taylor's series method to solve $\frac{d y}{d x}=2 x-3 y$ at $x=0.1$, given that $y(0)=1$.

SECTION-B

2. Use iteration method to obtain the root of equation $x^{3}-15 x+8=0$ correct to four decimal places.
3. Solve the following system of equation using the Gauss-elimination method :

$$
\begin{gathered}
3 x-y+2 z=12 \\
x+2 y+3 z=11 \\
2 x-2 y-z=2 .
\end{gathered}
$$

4. Fit a curve of the form $y=a b^{x}$ to the given data :
$y(2)=144, y(3)=172.8, y(4)=207.4 . y(5)=248.8, y(6)=298.5$.
5. Using modified Euler's method, find an approximate value of $y(0.3)$, given that $y(0)=0$ and

$$
\frac{d y}{d x}=1-y+e^{x}
$$

with $h=0.1$
6. Find the value of $\frac{d y}{d x}$ at $x=40$ from the following data :

$x:$	0	10	20	30	40
$y:$	1	0.984	0.939	0.866	0.766

SECTION-C

7. Use the method of triangularization to solve the system of equations

$$
\begin{aligned}
& x+3 y+z=3 \\
& x+4 y+2 z=3 \\
& x+2 y-3 z=6
\end{aligned}
$$

8. For the given initial value problem (IVP), $\frac{d y}{d x}=x-y^{2}, y(0)=1$, estimate the value of y (0.2) using Runge-Kutta method of fourth order with step size $h=0.1$.
9. The velocities of a car running on a straight road from rest position at intervals of 2 minutes are given below :
$\begin{array}{lllllll}\text { Times (in minutes) : } & 2 & 4 & 6 & 8 & 10 & 12\end{array}$
Velocity (in km/hr) : $22 \begin{array}{llllll}22 & 30 & 27 & 18 & 7 & 0\end{array}$
Find the total distance covered by the car in 12 minutes.
NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.
