Roll No. \square
Total No. of Questions: 09

B.Tech. (ME) (Sem.-4)
 MATHEMATICS-III
 Subject Code : AM-201
 M.Code : 54035

Time : 3 Hrs.
Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

1. Write briefly :
a) Give Dirichlet's conditions for the Fourier series expansion of $f(x)$.
b) Find the value of a_{n} in the Fourier series expansion of $f(x)=x,-\pi \leq x \leq \pi$.
c) Find Laplace transform of $f(t)=t^{n}$.
d) Write the definition of unit step function.
e) Write the Laplace tansform of periodic function $f(t)$ with period T .
f) Find the complementary function of PDE : $\left(2 \mathrm{D}^{2}+5 \mathrm{DD}^{\prime}+2 \mathrm{D}^{\prime 2}\right) z=0$.
g) Form the partial differential equation from $z=a x+a^{2} y^{2}+b$.
h) Give definition of singular point.
i) Give definition of conformal mapping.
j) Evaluate $\int\left[\left(x^{2}+2 y\right) d x+(3 x-y) d y\right]$ along the curve $x=2 t, y=t^{3}+3$ between $(0,3)$, $(2,4)$.

SECTION-B

2. Find the Fourier series expansion of $f(x)=\left\{\begin{array}{l}-1,0<x<\pi \\ 2, \pi<x<2 \pi\end{array}\right.$.
3. i) Find $L\{t \sin a t\}$ ii) $L^{-1}\left[\frac{s^{2}-3 s+4}{s^{3}}\right]$.
4. Prove the recurrence relation $\frac{d}{d x}\left[x^{n} J_{n}(x)\right]=x^{n} J_{n-1}(x)$ for Bessel function.
5. Solve the linear partial differential equation $(m z-n y) p+(n x-l z) q=l y-m x$.
6. Check if the function $f(z)=2 x y+i\left(x^{2}-y^{2}\right)$ is analytic ?

SECTION-C

7. a) Find the half range Fourier cosine series expansion of $f(x)=x, 0<x<\pi$.
b) Find $L^{-1}\left\{\frac{1}{(s+2)(s-1)}\right\}$ using convolation theorem.
8. a) Solve the differential equation $\frac{d y}{d t}+2 y=e^{-3 t}, y(0)=1$ using Laplace transform.
b) Solve $\left(\mathrm{D}^{2}+4 \mathrm{DD}^{\prime}-5 \mathrm{D}^{\prime 2}\right) z=\sin (2 x+3 y)$.
9. a) Find the analytic function, whose real part is $u=\frac{\sin 2 x}{\cosh 2 y-\cos 2 x}$.
b) Find the Taylor's series expansion of $f(z)=\frac{1}{(z+1)(z+3)}$ for the region $|z|<1$.

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

