Roll No.							Total No. of Pages	: 02

Total No. of Questions: 09

B.Tech (ME) (Sem.-5)
NUMERICAL METHOD ANALYSIS/
NUMERICAL METHODS IN ENGG.

Subject Code: ME-309 M.Code: 59028

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

1. Write briefly:

- a) Define relative and absolute errors.
- b) State Newton-Raphson method for nonlinear equation f(x) = 0.
- c) Define Eigen value and Eigen vector of a matrix.
- d) Write the Euler's method for solving the ordinary differential equation.
- e) Write Newton-cote's quadrature formula.
- f) What is the difference between Simpson 1/3 and Simpson 3/8 rule.
- g) Write the governing equation of cubic splines.
- h) State Lagrange's formula for equally spaced data points.
- i) Write the difference between Euler's and modified Euler's method.
- j) State the Laplace equation for the partial differential equation.

SECTION-B

2. Using Newton's iterative method, find the real root of $x \log_{10} x = 1.2$ correct to five decision places.

1 M-59028 (S2)-2716

3. Determine f(x) as a polynomial in x for the following data, using Newton's divided difference formulae.

<i>x</i> :	-4	-1	0	2
f(x): 1245	33	5	9	1335

4. Use the method of least squares to fit the curve $f(t) = ae^{-3t} + be^{-2t}$ for the following data:

<i>t</i> :	0.1	0.2	0.3	0.4
<i>f</i> (<i>t</i>):	0.76	0.58	0.44	0.35

5. Solve the following equation by Gauss elimination method:

$$2x + y + z = 10$$
; $3x + 2y + 3z = 18$; $x + 4y + 9z = 16$

6. Find all the eigen values and the eigen vector corresponding to the largest eigen value (only) of the matrix

$$\begin{bmatrix} 1 & 2 & -2 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{bmatrix}$$

SECTION-C

7. a) Use Simpson's $1/3^{rd}$ rule to find

By taking seven ordinates.

b) From the table below, for what value of x, y is minimum? Also find this value of y.

<i>x</i> :	3 4	5	6	7	8
<i>y</i> :	0.205 0.240	0.259	0.262	0.250	0.224

8. Using Runge-Kutta method of fourth order, solve

$$\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$$

with y(0) = 1 at x = 0.2, 0.4.

9. Solve the equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ subjected to the condition $u(x, 0) = \sin \pi x$, $0 \le x \le 1$; u(0, t) = u(1, t) = 0. Carry out computations for two levels taking h = 1/3 and k = 1/36.

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

2 M-59028 (S2)-2716