Roll No.

Total No. of Pages : 02
Total No. of Questions : 09

$$
\begin{gathered}
\text { B.Tech. (EE) (PT) (Sem.-2) } \\
\text { ELECTROMAGNETIC FIELDS } \\
\text { Subject Code : BTEE-403 } \\
\text { M.Code : } 71538
\end{gathered}
$$

Time : 3 Hrs.
Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION - B \& C. have FOUR questions each.
3. Attempt any FIVE questions from SECTION B \& C carrying EIGHT marks each.
4. Select atleast TWO questions from SECTION - B \& C.

SECTION-A

1. Write briefly :
(a) Write the mathematical expression of Laplacian Operator in Cartesian form.
(b) If $B=x^{2} y i+(x-y) k$. Find Curl A? Where í and k are unit vectors?
(c) Calculate the electrostatic force between two protons in a nucleus of iron with which they repel each other. Assume Separation of $4 \times 10^{-15} \mathrm{~m}$ between protons.
(d) Derive the expression for total energy density in static electric fields.
(e) Identify the wave polarization of $E=25 \sin (\omega t+4 x)\left(a_{y}+j a_{z}\right)$.
(f) Differentiate between critical angle and Brewster angle.
(g) An EM wave in free space has $\mathrm{E}(\mathrm{y}, \mathrm{t})=25 \sin \left(10^{8} \mathrm{t}-\mathrm{y}\right) \mathrm{a}_{\mathrm{z}}$. Find direction of Propagation.
(h) Define Magnetic Vector Potential.
(i) Write down Mathematical expression for Continuity Equation.
(j) The wave velocity in free space is $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$. Find the velocity of wave in the medium having dielectric constant 9 .
www.FirstRanker.com

SECTION-B

2. (a) State and Prove Stoke's Theorem.
(b) A Vector V is called irrotational if Curl $\mathrm{V}=0$. Determine constant $\mathrm{a}, \mathrm{b} \& \mathrm{c}$ so that $\mathrm{V}=\mathrm{i}(\mathrm{x}+2 \mathrm{y}+\mathrm{az})+\mathrm{j}(\mathrm{bx}-3 \mathrm{y}-\mathrm{z})+\mathrm{k}(4 \mathrm{x}+\mathrm{cy}+2 \mathrm{z})$ is irrotational.
3. (a) Derive the expression for Laplace and Poisson's Equation.
(b) A parallel plate capacitor consists of two sheets of copper foil, each of area $0.1 \mathrm{~m}^{2}$, separated by a 2.0 mm thick sheet of plastic having relative permittivity of 2.1. Find the Capacitance.
4. (a) Explain Ampere's Law of force?.
(b) Calculate the axial magnetic field due to a current I flowing through a circular loop of radius r at a distance d from the center along the axis.
5. Derive the Expression of the Wave equations for free space.

SECTION-C

6. Write down Maxwell's Equations for time-varying fields in both differential and integral forms. Also write the word statements of these equations from the mathematical statements in integral form.
7. The electric field E and magnetic field H in a source free, homogenous, isotropic region are given as $\mathrm{E}=100(\mathrm{jx}+2 \mathrm{y}-\mathrm{jz}) \mathrm{e}^{\mathrm{jwt}}$ and $\mathrm{H}=(-\mathrm{x}+\mathrm{jy}+\mathrm{z}) \mathrm{e}^{\mathrm{jwt}}$.

Estimate the average power flowdensity and its direction in the region where $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are the unit vectors.
8. (a) Derive the relation between reflection coefficient and transmission coefficient at normal incidence in perfect dielectric.
(b) When a plane wave travelling in a free space is incident normally on a medium having dielectric constant is 4 . Find the fraction of power transmitted in the medium.
9. Derive the expression for the Transformation between the Cartesian, Cylindrical and Spherical Coordinate Systems.

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

