

www.FirstRanker.com

www.FirstRanker.com

Roll No.	al No. of Pages : 02
Total No. of Questions : 07	
B.Tech. (Ind. Engg. & Mgt. (Spl. in TQM)) PT	(Sem.–1)
APPLIED MATHEMATICS	
Subject Code : IEM-104	
M.Code:61004	

Time: 3 Hrs.

Max. Marks: 40

INSTRUCTIONS TO CANDIDATES :

- 1. Attempt Any EIGHT questions from SECTION-A carrying TWO marks each.
- 2. Attempt any FOUR questions out of SIX questions from SECTION-B carrying SIX marks each.

SECTION-A

l. Attempt the following :

- a) Solve the quadratic equation $x^2 \sqrt{2ix} + 12 = 0$.
- b) Prove that $2\sin^2\frac{\pi}{6} + \csc^2\frac{7\pi}{6}\cos^2\frac{\pi}{3} = \frac{3}{2}$
- c) Two lines passing through point (2, 3) intersect each other at an angle of 60°. If the slope of one line is 2, find the equation of other line.
- d) Find the equation of ellipse whose directrix is x y + 3 = 0, focus (-1, 1) and eccentricity is 1/2.
- e) Define scalar matrix.
- f) If $\vec{a} = 2\hat{i} + 2\hat{j} \hat{k}$, $\vec{b} = 6\hat{i} 3\hat{j} + 2\hat{k}$ find $\vec{a} \times \vec{b}$ and a vector \perp to both \vec{a} and \vec{b} . Also determine sine of angle between \vec{a} and \vec{b} .

g) Differentiate
$$\left(\frac{1+\tan x}{1-\tan x}\right)$$
 w.r.t. x.

h) Find gradient of a curve.

www.FirstRanker.com

- i) Evaluate $\int_{0}^{2} (2x^2 + 3x + 1)$ by second fundamental theorem.
- j) Find the maximum and minimum value of the function $f(x) = \sin 2x + 5$

SECTION-B

- 2. Prove that $\tan \alpha + 2 \tan 2\alpha + 4 \tan 4\alpha + 8 \cot 8\alpha = \cot \alpha$.
- 3. Using matrices solve the system of equations for x, y and z

$$x + 2y - 3z = 6$$
$$3x + 2y - 2z = 3$$
$$2x - y + z = 2$$

- . fit In binomial expansion of $(1 + x)^n$, coefficients of fifth, sixth and seventh terms are in A.P. 4. Find all possible values of *n*.
- Differentiate $(x^{tanx} + (sinx)^{cosx}) w.r.t. x$. 5.
- Evaluate $\int_{0}^{\pi} \cos 2x \log \sin x dx$. 6.
- Solve $y' 2y = \cos 3x$. 7.

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.