Roll No. \square Total No. of Pages : 02
Total No. of Questions : 07

B.Tech. (Ind. Engg. \& Mgt. (SpI. in TQM)) PT
 APPLIED MATHEMATICS
 Subject Code : IEM-104
 M.Code : 61004

Time : 3 Hrs.

Max. Marks : 40

INSTRUCTIONS TO CANDIDATES :

1. Attempt Any EIGHT questions from SECTION-A carrying TWO marks each.
2. Attempt any FOUR questions out of SIX questions from SECTION-B carrying SIX marks each.

SECTION-A

1. Attempt the following :
a) Solve the quadratic equation $x^{2}-\sqrt{2} i x+12=0$.
b) Prove that $2 \sin ^{2} \frac{\pi}{6}+\operatorname{cosec}^{2} \frac{7 \pi}{6} \cos ^{2} \frac{\pi}{3}=\frac{3}{2}$
c) Two lines passing through point $(2,3)$ intersect each other at an angle of 60°. If the slope of one line is 2 , find the equation of other line.
d) Find the equation of ellipse whose directrix is $x-y+3=0$, focus $(-1,1)$ and eccentricity is $1 / 2$.
e) Define scalar matrix.
f) If $\vec{a}=2 \hat{i}+2 \hat{j}-\hat{k}, \vec{b}=6 \hat{i}-3 \hat{j}+2 \hat{k}$ find $\vec{a} \times \vec{b}$ and a vector \perp to both \vec{a} and \vec{b}. Also determine sine of angle between \vec{a} and \vec{b}.
g) Differentiate $\left(\frac{1+\tan x}{1-\tan x}\right)$ w.r.t. x.
h) Find gradient of a curve.
i) Evaluate $\int_{0}^{2}\left(2 x^{2}+3 x+1\right)$ by second fundamental theorem.
j) Find the maximum and minimum value of the function $f(x)=\sin 2 x+5$

SECTION-B

2. Prove that $\tan \alpha+2 \tan 2 \alpha+4 \tan 4 \alpha+8 \cot 8 \alpha=\cot \alpha$.
3. Using matrices solve the system of equations for x, y and z

$$
\begin{gathered}
x+2 y-3 z=6 \\
3 x+2 y-2 z=3 \\
2 x-y+z=2
\end{gathered}
$$

4. In binomial expansion of $(1+x)^{n}$, coefficients of fifth, sixth and seventh terms are in A.P. Find all possible values of n.
5. Differentiate $\left(x^{\tan x}+(\sin x)^{\cos x}\right)$ w.r.t. x.
6. Evaluate $\int_{0}^{\pi} \cos 2 x \log \sin x d x$.
7. Solve $y^{\prime}-2 y=\cos 3 x$.

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

