www.FirstRanker.com

www.FirstRanker.com

Total No. of Pages : 03

Total No. of Questions : 07

FirstRanker.com

B.Tech. (Ind. Engg. & Mgt.) (Spl. in TQM) PT (Sem.-4) STATISTICAL QUALITY CONTROL Subject Code : IEM-403 M.Code : 61018

Time: 3 Hrs.

Max. Marks: 40

INSTRUCTIONS TO CANDIDATES :

- 1. Attempt EIGHT out of TEN questions from SECTION-A carrying TWO marks each.
- 2. Attempt any FOUR out of SIX questions from SECTION-B carrying SIX marks each.

SECTION-A

1. Answer briefly :

- a. Write importance of planning phase for quality control.
- b. Discuss various objectives of inspection.
- c. Write disadvantages of sampling.
- d. What do you mean by sampling for variables?
- e. What do you mean by acceptance control?
- f. Write short note on operating characteristics curve.
- g. What is Taguchi quadratic loss function? Discuss.
- h. Write various stages in process capability studies.
- i. Write objectives of statistical process control.
- j. Discuss limitations of control charts.

www.FirstRanker.com

SECTION-B

- 2. The quality control inspector at Cocoa Fizz would like to develop a range (R) chart in order to monitor volume dispersion in the bottling process. Use the data from Table 1 to develop control limits for the sample range.
- 3. Compute the *Cpk* measure of process capability for the following machine and interpret the findings. What value would you have obtained with the *Cp* measure?

Machine Data: USL = 80

LSL = 50

Process $\sigma = 5$

Process $\mu = 60$

Sample	Bottle volume in Ounces				Average	Range
No.	1	2	3	4	\overline{X}	R
1	15.85	16.02	15.83	15.93	15.91	.19
2	16.12	16.00	15.85	16.01	15.99	.27
3	16.00	15.91	15.94	15.83	15.92	.17
4	16.20	15.85	15.74	15.93	15.93	.46
5	15.74	15.86	16.21	16.10	15.98	.47
6	15.94	16.01	16.14	16.03	16.03	.20
7	15.75	16.21	16.01	15.86	15.86	.46
8	15.82	15.94	16.02	15.94	15.93	.20
9	16.04	15.98	15.83	15.98	15.86	.21
10	15.64	15.86 -	15.94	15.89	15.83	.30
11	16.11	16.00	16.01	15.82	15.99	.29
12	15.72	15.85	16.12	16.15	15.96	.43
13	15.85	15.76	15.74	15.98	15.83	.24
14	15.73	15.84	15.96	16.10	15.91	.37
15	16.20	16.01	16.10	15.89	16.05	.31
16	16.12	16.08	15.83	15.94	15.99	.29
17	16.01	15.93	15.81	15.68	15.86	.33
18	15.78	16.04	16.11	16.12	16.01	.34
19	15.84	15.92	16.05	16.12	15.98	.28
20	15.92	16.09	16.12	15.93	16.02	.20
21	16.11	16.02	16.00	15.88	16.00	.23
22	15.98	15.82	15.89	15.89	15.90	.16
23	16.05	15.73	15.73	15.93	15.86	.32
24	16.01	16.01	15.89	15.86	15.94	.15
25	16.08	15.78	15.92	15.98	15.94	.30
Total					398.75	7.17

2 | M-61018

(S110)-2700

www.FirstRanker.com

- 4. Control charts of \overline{X} and R. σ are to be maintained on drawings from a bowl of chips the distribution of which is approximately normal. The subgroup size is 5, \overline{X} is 60 and σ is 8. Assume that 3 sigma control limits are to be based on \overline{X} and σ . Compute the value of the upper control limit the centre line and the lower control limit for the \overline{X} , R and σ charts respectively.
- 5. The lot size N is 2,000 in a certain AOQL inspection procedure. The desired AOQL of 2% can be obtained with any one of the three sampling plans. These are :
 - a. n = 65, c = 2
 - b. n = 41. c = 1 and

FirstRanker.com

c. n = 18, c = 0.

If a large number of lots 0.3% defective are submitted for acceptance, .what will be the average number of units inspected per lot under each of these sampling plans?

ter.com

- 6. Write short notes on the following :
 - a. Systematic sampling plan
 - b. Producer's risk and consumer's risk
- 7. a. State the objectives of \overline{X} and R charts.
 - b. Compare \overline{X} chart with R charts. Discuss the circumstances in which either of the two or a combination of these will be used for the purpose of control.

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.