\square

B.Tech.(Instrumentation \& Control Engg.) (Sem.-3)
 APPLIED MATHEMATICS - III
 Subject Code : AM-201
 M.Code : 54501

Time : 3 Hrs.

Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

1. Write briefly :
a) Evaluate, $\oint_{C} \frac{e^{z}}{\cos \pi z} d z$ along the circle $\mathrm{C}:|\sigma|=1$.
b) Find $\mathrm{L}\left(\sin ^{2} 3 t\right)$.
c) Solve $\left(x^{2}-y z\right) p+\left(y^{2}-z x\right) q=z^{2}-x y$.
d) Show that an analytic function with constant modulus is constant.
e) Write half range sine series of the function $f(x)=x$ in the interval $0<x<2$.
f) Write the sufficient conditions for the existence of Laplace transform.
g) Find solution of homogeneous partial differential equation $4 r-12 s+9 t=0$.
h) Show that $n \mathrm{P}_{n}(x)=x P_{n}^{\prime}(x)-P_{n-1}^{\prime}(x)$.
i) If $f(x)$ is an odd function in $(-l, l)$, then what are the values of a_{0} and a_{n} ?
j) Find the bilinear transformation that map the points $z=1, i,-1$ into the points $w=i, 0,-i$.

SECTION-B

2. Find a Fourier series to represent e^{-x} from $x=-l$ to $x=l$.
3. A tightly stretched string with fixed end points $x=0$ and $x=1$ is initially in a position given by $y=y_{0} \sin ^{3}(\pi x)$. If it is released from rest from this position, find the displacement $y(x, t)$.
4. Show that function $f(z)$ defined by $f(z)=\frac{x^{2} y^{3}(x+i y)}{x^{6}+y^{10}}, z \neq 0, f(0)=0$, is not analytic at the origin even though it satisfies Cauchy-Riemann equations.
5. Evaluate $\int_{0}^{\infty} \frac{e^{-2 t \sin ^{2} t}}{t} d t$.
6. Show that $J_{\frac{5}{2}}(x)=\sqrt{\frac{2}{\pi x}}\left[\frac{1}{x^{2}}\left(3-x^{2}\right) \sin x-\frac{3}{x} \cos x\right]$.

SECTION-C

7. Use the concept of residues to evaluate $\int_{0}^{2 x y} \frac{d x}{(5-4 \sin x)}$.
8. Solve the equation using Laplace transformation :

$$
\frac{d^{2} x}{d t^{2}}+2 \frac{d x}{d t}+5 x=e^{-t} \sin t, x(0)=0, x^{\prime}(0)=1
$$

9. Find the power series solution about the origin of the equation :

$$
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+6 y=0 .
$$

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

