\square Total No. of Pages : 02
Total No. of Questions: 09

B.Tech.(Petroleum Refinary Engineering) (2013 Onwards) (Sem.-3)

 ENGINEERING MATHEMATICS-IIISubject Code : BTAM-201
M.Code : 72189

Time : 3 Hrs.

Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

1. Write briefly :
a) Define Fourier series expansion for an evenfunction.
b) Find Fourier sine series of the function $f(x)=1,0 \leq x \leq 2$.
c) Find the inverse Laplace transform of $\frac{4 e^{-(s \pi / 2)}}{s^{2}+16}$
d) Find the Laplace transform of $f(t)=t \sin t$.
e) Obtain a partial differential equation by eliminating the arbitrary constants c and ω from $z=c e^{\omega t} \cos (\omega x)$
f) State and prove first shifting property of Laplace transforms.
g) Find singular points of the differential equation $\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+n(n+1) y=0$
h) State Cauchy's integral formula.
i) Show that the function $u(x, y)=2 x+y^{3}-3 x^{2} y$ is harmonic.
j) Is $f(z)=|z|^{2}$ analytic function? Justify your answer.

SECTION-B

2. Find the solution of the given homogeneous partial differential equation

$$
\left[\mathrm{D}^{3}-3 \mathrm{D}^{2} \mathrm{D}^{\prime}+3 \mathrm{D}\left(\mathrm{D}^{\prime}\right)^{2}+\left(\mathrm{D}^{\prime}\right)^{3}\right] z=0 .
$$

3. Show that the function :

$$
f(z)=\left\{\begin{array}{cc}
\frac{x^{3}(1+i)-y^{3}(1-i)}{x^{2}+y^{2}} & z \neq 0, \\
0 & z=0
\end{array}\right.
$$

satisfies the Cauchy Riemann equations at $z=0$ but $f^{\prime}(0)$ does not exist.
4. Evaluate the integral $\oint_{C} \frac{e^{z}}{z^{2}(z+1)^{3}} d z, \mathrm{C}:|z|=2$
5. Find inverse Laplace transform of $\frac{1}{\left(s^{2}+9\right)^{2}}$
6. Express the Bessel's function $\mathrm{J}_{4}(x)$ in terms of $\mathrm{J}_{0}(x)$ and $\mathrm{J}_{1}(x)$.

SECTION-C

7. Find series solution about $x=0$, of the differential equation

$$
x(1+x) y^{\prime \prime}+3 x y^{\prime}+y=0
$$

8. Find all possible Taylor and Laurent series expansions of the function $f(z)=\frac{1}{(z+1)(z+2)^{2}}$
9. Find the Fourier series expansion of the function :

$$
f(x)=\left\{\begin{array}{rr}
0 & -\pi \leq x \leq 0 \\
x^{2} & 0 \leq x \leq \pi
\end{array}\right.
$$

and hence show that $1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}} \ldots=\frac{\pi^{2}}{6}$

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

