Roll No. \square Total No. of Pages : 02
Total No. of Questions : 09

B.Tech. (Aerospace Engg.) (2012 Onwards)/(ANE)
 MATHEMATICS - III
 Subject Code : AM-201
 M.Code: 60537

Time : 3 Hrs.
Max. Marks : 60

INSTRUCTIONS TO CANDIDATES:

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

1. Attempt the following :
a. Find $\mathrm{L}\left\{\mathrm{e}^{-2 t} \sin 2 t\right\}$.
b. Find $\mathrm{L}^{-1}\left\{\frac{e^{-2 s}}{s-2}\right\}$
c. What is the value of $J_{n-1}(x)+J_{n+1}(x)$ in terms of $J_{n}(x)$?
d. Write the complete solution of a differential equation when the roots of the indicial equation are distinct and differ by an integer.
e. Form the partial differential equation from, $z=x f_{1}(x+t)+f_{2}(x+t)$.
f. Solve $p q=p+q$.
g. Write any one property of analytic functions.
h. Give an example of a harmonic function.
i. What are Dirichlets conditions?
j. Find the sine series of x in $(0,2)$.

SECTION-B

2. Find the Fourier series of e^{-x} in the interval $(0,2 \pi)$.
3. Using the concept of Laplace equations, solve
$x^{\prime \prime}+2 x^{\prime}+5 x=e^{-t} \sin t$, where $x(0)=0, x^{\prime}(0)=1$.
4. Show that $J_{n}(x)=\frac{1}{\pi} \int_{0}^{\pi} \cos (n \theta-x \sin \theta) d \theta$
5. Solve, $\left(x^{2}-y^{2}-z^{2}\right) p+2 x y q=2 x z$.
6. Determine the analytic function whose imaginary part is $\cos x \cosh y$.

SECTION-C

7. Solve in series, $x y^{\prime \prime}+y^{\prime}-y=0$.
8. A string is stretched and fastened to two points I apart. Motion is started by displacing the string in the form $\mathrm{y}=\mathrm{a} \sin \frac{\pi x}{l}$ from which it is released at time $t=0$. Show that the displacement of any point at a distance x from one end at time t is given by, $y(x, t)=a \sin \frac{\pi x}{l} \cos \frac{\pi c t}{l}$
9. Evaluate by contour integration $\int_{0}^{2 \pi} \frac{\cos 2 \theta}{5+4 \cos \theta} d \theta$.

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

