

www.FirstRanker.com

www.FirstRanker.com

Roll No.	No. of Pages : 02
Total No. of Questions:09	
B.Tech.(ANE)/(Aerospace Engg.) (2012 Onwards) AERODYNAMICS-I	(Sem.–3)
Subject Code:ANE-203 M.Code:60502	
Time:3 Hrs.	Max. Marks:60

Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks 1. each.
- SECTION-B contains FIVE questions carrying FIVE marks each and students 2. have to attempt any FOUR questions.
- SECTION-C contains THREE questions carrying TEN marks each and students 3. have to attempt any TWO questions.

SECTION-A

- 1. a) Differentiate between compressible and incompressible flows.
 - b) What instrument is used to measure air speed over an airfoil?
 - c) Define mach number and Reynolds number.
 - d) What is Reynolds Transport theorem?
 - e) Define Helmholtz laws of vortex motion.
 - f) For what type of flow, Euler's equation is valid?
 - g) For what type of flow, Navier-Stoke equation is used?
 - h) What is condition on Velocity for incompressible flow?
 - i) Differentiate between laminar and turbulent boundary layer.
 - i) Draw velocity profile of laminar and turbulent boundary layer.

www.FirstRanker.com

SECTION-B

- 2. A 2-D body is placed in a 2-D steady flow with free stream velocity of V_{∞} and angle of attack α . Derive the expression for normal and axial force per unit span.
- 3. Consider the velocity field given by $u = y/(x^2 + y^2)$ and $v = -x/(x^2 + y^2)$. Calculate the equation of streamline passing through point (0, 5).
- 4. A uniform flow with free stream velocity v_{∞} is superimposed on a source of strength k located at the origin. The uniform flow is moving from left to right. Draw the resultant flow pattern over the semi-infinite body and obtain the expressions for velocity components v_r and v_{θ} .
- 5. Explain the poiseuille flow. Obtain the expression for velocity variation across the flow, maximum velocity and shear stress at the walls.
- 6. Explain boundary layer formation over a flat plate and derive the expressions for displacement thickness and momentum thickness.

SECTION-C

7. The velocity field over a wavy wall is given as

$$U = V_{\infty} \left[1 + \frac{h}{\beta} \frac{2\pi}{l} \left(\cos \frac{2\pi x}{l} \right) e^{-2\pi \beta y/l} \right]$$
$$\upsilon = -V_{\infty} h \frac{2\pi}{l} \left(\sin \frac{2\pi x}{l} \right) e^{-2\pi \beta y/l}$$

Prove that the flow is irrotational.

- 8. A uniform flow with free stream velocity V_{∞} and a doublet of strength k are superimposed on a vortex of strength Γ . Determine the stream function, velocity components V_r , V_{θ} and expression for lift per unit span over the resulting cylinder.
- 9. Consider the incompressible, 2-D flow over a flat plate at zero angle of attack. Obtain Blasius solution of boundary layer equations and discuss the solution.

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

2 | M -60502

www.FirstRanker.com