www.FirstRanker.com

www.FirstRanker.com

Roll No. Total No. of Pages: 03

Total No. of Questions: 09

B.Tech.(Aerospace Engg.) (2012 Onwards) (Sem.-4)

AEROSPACE STRUCTURES – I

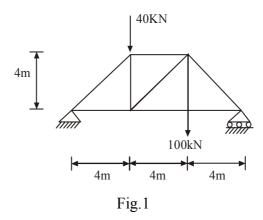
Subject Code: ASPE-206 M.Code: 71530

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A


1. Answer briefly:

- a) What do you mean by τ_{vx} ?
- b) Write equations of equilibrium for 2-D problem.
- c) What is the angle between planes of maximum shear stress and principal planes?
- d) Define strain energy of a member due to torsional load.
- e) What is the significance of Castigliano's theorem?
- f) What is the application of unit load method?
- g) What is statically determinate truss?
- h) Explain the term 'truss'.
- i) What is Southwell plot?
- j) What is equivalent length of a column?

SECTION-B

- 2. A structural member supports loads which produce, at a particular point, a direct tensile stress of 80 N/mm² and a shear stress of 45 N/mm² on the same plane. Calculate the values and directions of the principal stresses at the point and also the maximum shear stress, stating on which planes this will act.
- 3. Determine the forces in the truss shown below by method of joints.

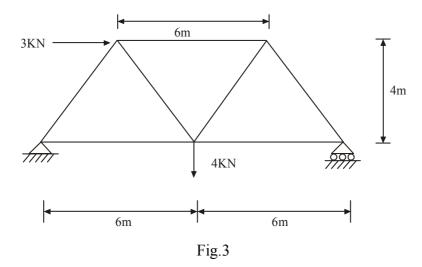
4. A cantilever is loaded at the tip as shown below. Obtain the value of deflection at the tip.

Fig.2

- 5. A column of length L has both ends fixed. It is loaded with a compressive load P. Determine the value of buckling load of the column.
- 6. Explain the salient features of structures of rockets, missiles and satellites.

SECTION-C

7. A cantilever 800 mm long with a prop 500 mm from the wall deflects in accordance with following observations when a point load of 40 N is applied at its end.


Distance (mm):	0	100	200	300	400	500	600	700	800
Deflection (mm):	0	-0.3	-1.4	-2.5	-1.9	0	2.3	4.8	10.6

What will be the angular rotation of the beam at the prop due to a 30 N load applied 200 mm from the wall, together with a 10 N load applied 350 mm from the wall?

2 M-71530 (S2)-2174

8. Calculate the horizontal movement of the support D in the truss shown below. The crosssectional area of each member is 1800 mm² and $E = 2 \times 10^5 \text{ N/mm}^2$. 10

9. Explain the following:

a) Maximum stress theory

3

b) Maximum strain theory

3

c) Maximum shear stress theory

4

MMM/FitstRainker.com

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

3 | M-71530 (S2)-2174