

www.FirstRanker.com

www.FirstRanker.com

Total No. of Pages : 02

Total No. of Questions : 09

B.Tech.(Aerospace Engg.) (2012 Onwards) (Sem.–5) AERODYNAMICS-II Subject Code : ASPE-303

M.Code: 71837

Time: 3 Hrs.

Max. Marks : 60

INSTRUCTION TO CANDIDATES :

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt ANY FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt ANY TWO questions.

SECTION-A

- **1.** Explain the following briefly :
 - (a) Define Biot-Savart law.
 - (b) Draw lift curves for symmetrical and cambered airfoil sections.
 - (c) What do you mean by formation flying?
 - (d) What do you mean by ground effects?
 - (e) Explain briefly transonic area rule.
 - (f) Define Drag divergence Mach number.
 - (g) Define supersonic and subsonic leading edges.
 - (h) Define supercritical airfoils.
 - (i) What do you mean by leading edge suction?
 - (j) What do you mean by laminar and turbulent flows?

www.FirstRanker.com

www.FirstRanker.com

SECTION-B

- 2. Explain the horse shoe vortex system.
- 3. What do you mean by shock-free airfoils? Explain their importance.
- 4. Explain Prandtl's lifting line theory and its limitations.
- 5. Explain slender body theory and its importance.
- 6. Write a note on 'Blasius Solution'.

SECTION-C

7.	a) Derive Navier-Stokes equations for two-dimensional flow.	(5)
	b) Explain the turbulent boundary layer properties over flat plate at low speeds.	(5)
8.	Write notes on the following :	
	a) Prandtl - Glauert compressibility correction	(5)
	b) Vortex panel method	(5)
9.	Define induced drag. Derive the expressions for induced angle of attack and induce coefficient for a wing having elliptical lift distribution.	ed drag (2, 8)

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.