Roll No. \square Total No. of Pages : 02
Total No. of Questions : 09

B.Tech.(Aerospace Engg.) (2012 Onwards)/B.Tech.(ANE) (Sem.-4) NUMERICAL ANALYSIS
 Subject Code : ANE-204
 M.Code : 60512

Time : 3 Hrs.
Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

1. Answer briefly :
a) Evaluate the sum $S=\sqrt{3}+\sqrt{5}+\sqrt{7}$ to four significant digits and find its absolute and relative errors.
b) Write the Newton-Cote's quadrature formula.
c) Using Euler's method, find $y(1)$, given that $y^{\prime}=x+y$ and $y(0)=1$.
d) Write the normal equations for fitting a straight line to the data using a method of least squares.
e) Find a root of $x^{3}-x-1=0$ using a bisection method correct to two decimal places.
f) Evaluate $\int_{5}^{12} \frac{d x}{x}$ by Gauss quadrature formula.
g) Using Taylor's series method find $y(0.2)$ for $y^{\prime}=2 y+3 e^{x}, y(0)=0$.
h) What is the condition of convergence of fixed point iteration method?
i) Write a short note on finite difference method.
j) Classify the partial differential equation :

$$
y^{2} u_{x x}-2 x y u_{x y}+x^{2} u_{y y}+2 u_{x}-3 u=0
$$

SECTION-B

2. Find a root of $x e^{x}=\cos x$ using Regula-falsi method correct to four decimal places.
3. Solve the following system of equation using the Gauss-Seidel iteration method :

$$
\begin{gathered}
6 x+3 y+1=9 \\
2 x-5 y+2 z=-5 \\
3 x+2 y+8 z=-4
\end{gathered}
$$

4. Estimate the values of $f(22)$ and $f(42)$ from the following available data :

$\boldsymbol{x}:$	20	25	30	35	40	45
$\boldsymbol{f}(\boldsymbol{x}):$	354	332	291	260	231	204

5. Use Runge-Kutta method to approximate y when $x=1.2$. given that $y=1.2$ when $x=1$ and $\frac{d y}{d x}=3 x+y^{2}$.
6. Evaluate $\int_{0}^{\pi / 2} \sin x d x$, using Simpson's $1 / 3$ rule.

SECTION-C

7. Use the power method to find the largest eigen value and the associated eigen vectors of the matrix $A=\left[\begin{array}{rrr}1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10\end{array}\right]$ starting with $[0,0,1]^{t}$ as initial eigen vector.
8. For IVP $y^{\prime}=x-y^{2}, y(0)=1$, estimate $y(0.8)$ using the Milne's predictor-corrector method with $h=0.2$.
9. Solve the equation $\nabla^{2} u=-10\left(x^{2}+y^{2}+10\right)$ over the square with sides $x=0=y, x=3=y$ with $u=0$ on the boundary and mesh length equal to one.

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

