

www.FirstRanker.com

www.FirstRanker.com

Roll No.							Total No. of Pages: 0	2
								_

Total No. of Questions: 09

MCA (2014 Batch) (Sem.-2) MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE

Subject Code : MCA-201 M.Code : 26052

Time: 3 Hrs. Max. Marks: 100

INSTRUCTIONS TO CANDIDATES:

- SECTIONS-A, B, C & D contains TWO questions each carrying TWENTY marks each and students has to attempt any ONE question from each SECTION.
- SECTION-E is COMPULSORY consisting of TEN questions carrying TWENTY marks in all.

SECTION-A

- a) Define a Hamiltonian circuit in a graph. Give an example of a graph which has a Hamiltonian circuit and an example of a graph which does not have a Hamiltonian circuit
 - State and prove five-color problem.
- A connected multigraph has an Euler circuit. Prove that each of its vertices has even degree.

SECTION-B

- 3. In a survey of 25 students, it was found that 15 had taken Mathematics, 12 had taken Physics and 11 had taken Chemistry, 5 had taken Mathematics and Chemistry, 9 had taken Mathematics and Physics, 4 had taken Physics and Chemistry and 3 had taken all the three subjects. Find the number of students studying (a) only Physics; (b) Physics and Chemistry but not Mathematics; (c) Atleast one of the three subjects.
- a) Partition the set A = {1, 2, 3,, 10} using the minsets generated by B1 = {1, 7, 8}, B2 = {1, 6, 9,10}, B3 = {1, 9, 10}. Also represent the minsets thus generated through a Venn diagram.
 - b) Define a Relation. Discuss the properties of relations.

SECTION-C

Prove by the principle of mathematical induction that for all n ∈ N:

$$1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{1}{6}n (n+1) (2n+1)$$

Show that (∀x) (P(x) v Q(x)) => (∀x) P(x) v (∃x) Q(x).

1 M-26052 (S14)-1644

SECTION-D

7. a) Find the inverse of the matrix:

1	1	0
1	0	1
1	2	2

- Discuss matrix addition, scalar multiplication and multiplication of matrices by taking suitable example.
- Solve the following system using Gauss-Jordan elimination :

$$3x_1 + x_2 + 7x_3 + 2x_4 = 13$$

$$2x_1 - 4x_2 + 14x_3 - x_4 = -10$$

$$5x_1 + 11x_2 - 7x_3 + 8x_4 = 59$$

$$2x_1 + 5x_2 - 4x_3 - 3x_4 = 39$$

SECTION-E

- 9. Write briefly:
 - a) What is a bipartite graph and a complete bipartite graph?
 - b) Differentiate between directed and undirected graph.
 - c) What is chromatic number?
 - d) What is a universal set? Give an example.
 - e) State the DeMorgan's laws.
 - f) What are the different types of quantifiers? What is the purpose of each?
 - g) Define Proposition.
 - h) What is the difference between Equivalence and Implication?
 - What is transpose of a matrix? Give an example.
 - What is an Identity matrix? Give an example.

NOTE: Disclosure of Identity by writing Mobile No. or Marking of passing request on any paper of Answer Sheet will lead to UMC against the Student.

2 M-26052 (S14)-1644

