Roll No.
Total No. of Questions : 09
MCA (2014 Batch) (Sem.-2)

## MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE <br> Subject Code : MCA-201 <br> M.Code : 26052

Time : 3 Hrs.
Max. Marks : 100

## INSTRUCTIONS TO CANDIDATES :

1. SECTIONS-A, B, C \& D contains TWO questions each carrying TWENTY marks each and students has to attempt any ONE question from each SECTION.
2. SECTION-E is COMPULSORY consisting of TEN questions carrying TWENTY marks in all.

## SECTION-A

1. a) Define a Hamiltonian circuit in a graph. Give an example of a graph which has a Hamiltonian circuit and an example of a graph which does not have a Hamiltonian circuit.
b) State and prove five-color problem.
2. A connected multigraph has an Euler circuit. Prove that each of its vertices has even degree.

## SECTION-B

3. In a survey of 25 students, it was found that 15 had taken Mathematics, 12 had taken Physics and 11 had taken Chemistry, 5 had taken Mathematics and Chemistry, 9 had taken Mathematics and Physics, 4 had taken Physics and Chemistry and 3 had taken all the three subjects. Find the number of students studying (a) only Physics; (b) Physics and Chemistry but not Mathematics; (c) Atleast one of the three subjects.
4. a) Partition the set $\mathrm{A}=\{1,2,3, \ldots ., 10\}$ using the minsets generated by $\mathrm{B} 1=\{1,7,8\}$, $B 2=\{1,6,9,10\}, B 3=\{1,9,10\}$. Also represent the minsets thus generated through a Venn diagram.
b) Define a Relation. Discuss the properties of relations.

## SECTION-C

5. Prove by the principle of mathematical induction that for all $n \in N$ :

$$
1^{2}+2^{2}+3^{2}+\ldots \ldots \ldots \ldots \ldots+n^{2}=\frac{1}{6} n(n+1)(2 n+1)
$$

6. Show that $(\forall \mathrm{x})(\mathrm{P}(\mathrm{x})$ v $\mathrm{Q}(\mathrm{x}))=>(\forall \mathrm{x}) \mathrm{P}(\mathrm{x}) \vee(\exists \mathrm{x}) \mathrm{Q}(\mathrm{x})$.

## SECTION-D

7. a) Find the inverse of the matrix :

| 1 | 1 | 0 |
| :--- | :--- | :--- |
| 1 | 0 | 1 |
| 1 | 2 | 2 |

b) Discuss matrix addition, scalar multiplication and multiplication of matrices by taking suitable example.
8. Solve the following system using Gauss-Jordan elimination :

$$
\begin{gathered}
3 x_{1}+x_{2}+7 x_{3}+2 x_{4}=13 \\
2 x_{1}-4 x_{2}+14 x_{3}-x_{4}=-10 \\
5 x_{1}+11 x_{2}-7 x_{3}+8 x_{4}=59 \\
2 x_{1}+5 x_{2}-4 x_{3}-3 x_{4}=39
\end{gathered}
$$

## SECTION-E

## 9. Write briefly :

a) What is a bipartite graph and a complete bipartite graph?
b) Differentiate between directed and undirected graph.
c) What is chromatic number?
d) What is a universal set? Give an example.
e) State the DeMorgan's laws.
f) What are the different types of quantifiers? What is the purpose of each?
g) Define Proposition.
h) What is the difference between Equivalence and Implication?
i) What is transpose of a matrix? Give an example.
j) What is an Identity matrix? Give an example.

NOTE : Disclosure of Identity by writing Mobile No. or Marking of passing request on any paper of Answer Sheet will lead to UMC against the Student.

